In this work, ZnS thin films have been deposited by developed laser deposition technique on glass substrates at room temperature. After deposition process, the films were annealed at different temperatures (200ºC , 300 ºC and 400ºC ) using thermal furnace.The developed technique was used to obtain homogeneous thin films of ZnS depending on vaporization of this semiconductor material by continuous CO2 laser with a simple fan to ensure obtaining homogeneous films. ZnS thin films were annealed at temperature 200ºC, 300 ºC and 400ºC for (20) minute in vacuum environment. Optical properties of ZnS thin film such as absorbance, transmittance, reflectance, optical band gap, refractive index extinction coefficient and absorption coefficient have been investigated. From this measurements, the bandgaps energies at room temperature, 200ºC , 300 ºC and 400ºC were found to be 3.7eV, 3.6eV, 3.4eV and 3.3eV respectively. The band gap decreased as the annealing temperature increased. The two point probe method was used for the investigation of electrical properties of the ZnS films such as current voltage characteristics and sheet resistance properties. From these measurements it was found that current decreased as the temperature increased, thus, the annealed films were found to be more resistance than the as-grown films.
Premature degradation is the problem of maxillofacial silicones, significantly affected by ultraviolet exposure, contributing to silicones photodegradation. Degradation necessitates frequent replacement of prostheses that increase the total cost of rehabilitation.
This study evaluated the effect of bisoctrizole on the ultraviolet absorption properties of silicone material and the stability of this absorption over time. Also, the bisoctrizole effect on the surface roughness of silicone was evaluated.
Mechanical and thermal properties of composites, consisted of unsaturated polyester resin, reinforced by different kinds of natural materials (Orange peels and Date seeds) and industrial materials (carbon and silica) with particle size 98 µm were studied. Various weight ratios, 5, 10, and 15 wt. % of natural and industrial materials have been infused into polyester. Tensile, three-point bending and thermal conductivity tests were conducted for the unfilled polyester, natural and industrial composite to identify the weight ratio effect on the properties of materials. The results indicated that when the weight ratio for polyester with date seeds increased from 10% to 15%, the maximum Young’s modulus decreased by 54%. When the weight rat
... Show MoreThin films samples of Bismuth sulfide Bi2S3 had deposited on
glass substrate using thermal evaporation method by chemical
method under vacuum of 10-5 Toor. XRD and AFM were used to
check the structure and morphology of the Bi2S3 thin films. The
results showed that the films with law thickness <700 nm were free
from any diffraction peaks refer to amorphous structure while films
with thickness≥700 nm was polycrystalline. The roughness decreases
while average grain size increases with the increase of thickness. The
A.C conductivity as function of frequency had studied in the
frequency range (50 to 5x106 Hz). The dielectric constant,
polarizability showed significant dependence upon the variation of
thic
Results of a study of alloys and films with various Pb content have been reported and discussed. Films of of thickness 1.5
A characteristic study of a passively Q-switched diode pumped solid state laser system is presented in this work. For laser a comparison study for the theoretically calculated results with a simulation results using a software which calculates the Q-switched solid state laser parameters was such as energy, peak power and pulse width were performed. There was a good agreement between our theoretical calculations and the simulation values.
Abstract Twelve isolates of bacteria were obtained from samples of different soils and water amended with 100µg/ml of five heavy metals chlorides (i.e: Aluminum Al+2, Iron Fe+2, Lead Pb+2, Mercury Hg+2 and Zinc Zn+2). Four isolates were identified as Bacillus subtilis and B. subtilis (B2) isolate was selected for this study according to their resistance to all five heavy metals chlorides. The ability of B. subtilis (B2) isolate for growing in different concentration of heavy metals chlorides ranging from 200-1200 µg/ml was tested. The highest conc. that B. subtilis (B2) isolate tolerate was 1000 µg/ml for Al+2, Fe+2, Pb+2, and Zn+2and 300 µg/ml for Hg+2 for 24hour. The effect of heavy metals chlorides on bacterial growth for 72 hrs was
... Show MoreThis study aimed to identify the political factors influencing the performance of specialized journalists in Iraqi electronic newspapers. The significance of the study stems from the role of communication in newspapers that have established themselves in reality due to their wide dissemination, multiple uses, expanding freedom base, and the current diversity in perspectives. These newspapers highlight and publish societal issues of concern. The importance of these newspapers is associated with their creators who face various factors affecting their value and performance, whether positively or negatively. In light of this, the political factor was identified as the primary driver for other influencing factors. The
... Show MoreThe zeolite's textural properties have a significant effect on zeolite's effectiveness in the different industrial processes. This research aimed to study the textual properties of the NaX and FeX zeolites using the nitrogen adsorption-desorption technique at a constant low temperature. According to the International Union of Pure and Applied Chemistry, the adsorption-desorption isotherm showed that the studied materials were mixed kinds I/II isotherms and H3 type hysteresis. The Brunauer-Emmett-Teller isotherm was the best model to describe the nitrogen adsorption-desorption better than the Langmuir and Freundlich isotherms. The obtained adsorption capacity and Brunauer-Emmett-Teller surface area values for NaX were greater than FeX. Ac
... Show MoreAbstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability. Furthermore, the sensor is shif
... Show More