Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
Polycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for
A total of 60 cotton swabs are collected from patients suffering from burn wound and surgical site infections admitted to Baghdad Teaching Hospital and Burn Specialist Hospital in Baghdad city during 9/2013 to 11/2013. All cotton swabs are cultured initially on blood agar and MacConkey agar and subjected for standard bacteriological procedures for bacteriological diagnosis. Twenty samples out of sixty are identified as Pseudomonas aeruginosa by conventional methods. The results of antibiotic susceptibility test illustrate that the antibiotics resistance rate of Pseudomonas aeruginosa isolates is as follows:100% (2020) for ceftriaxone, cefepime and carbencillin, 70% (14/20) for amikacin, 65%(13/20) for tobramycin, ceftazidim and gentamycin,
... Show MoreThis work aimed to investigate the effect of Diode laser 805 nm on plasmid DNA and RNA
contents of some Gram negative bacteria represented by Escherichia coli and Proteus mirabilis isolates
.Plasmid extraction was done using two methods (Salting out and CTAB method).Different powers and
pulse repetition rates for 805 nm Diode Laser were used to study this effect. Results revealed that the
plasmid profile of the two species were highly affected using (2, 3) W at different frequencies including
5and 10 kHz as compared with 1 kHz while plasmids were gradually disappeared at 1W, 10 kHz. In the
same time the shining of RNA was also decreased gradually then disappeared with increasing powers
especially at 2W and 10 kHz cau
In this paper, Zinc oxide were deposited on a glass substrate at room temperature (RT) and two annealing temperatures 350ºC and 500ºC using laser induced plasma technique. ZnO nanofilms of 200nm thickness have been deposited on glass substrate. X-RAY diffraction (XRD), atomic force microscopy and UV-visible spectrophotometer were used to analyze the results. XRD forms of ZnO nanostructure display hexagonal structure with three recognized peaks (100), (002), and (101) orientations at 500ºC annealing temperature. The optical properties of ZnO nanostructure were determined spectra. The energy gap was 3.1 eV at 300 oC and 3.25eV at 500ºC annealing temperature.
The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
A chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode
... Show MorePhotonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7
... Show Moreشكلت التطورات التكنولوجية في وسائل التواصل الاجتماعي الناجمة عن العولمة معلم رئيسي في تحولات التنظيمات الإرهابية، وإنتاج انماط جديدة من الإرهابيين والمتطرفين القادرين على التفاعل مع الثورة المعلوماتية والاتصالية. ان معظم الجرائم الإرهابية الإلكترونية مرتبطة بالإنترنت وهو المسرح المفضل للمتطرفين فالأول يقتل والثاني يسوغ ويحرض ويجند، والذي جعل الإنترنت وسيلة فعالة كونها سهلة الاستخدام وسريعة الوصول إلى
... Show More