Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
By driven the moment estimator of ARMA (1, 1) and by using the simulation some important notice are founded, From the more notice conclusions that the relation between the sign and moment estimator for ARMA (1, 1) model that is: when the sign is positive means the root gives invertible model and when the sign is negative means the root gives invertible model. An alternative method has been suggested for ARMA (0, 1) model can be suitable when
The aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThe research aims to explain the role of the flexible budget in assessing the feedback resulting from deviations by comparing the actual results with the planned performance in light of the economic crisis that the world witnessed during the spread of Corona disease. As most companies, including the Electronic Industries Company, face the problem of controlling production costs and are trying hard to reduce these costs to the lowest level starting from measuring these costs and allocating them and distributing them to products. This helps in controlling deviations and thus the flexible budget becomes a tool that helps in controlling elements Costs
In this work, seven soil samples were brought brought to study and analyses the element concentrations from different southern regions of Iraq using laser-induced breakdown spectroscopy (LIBS) technique. It has been documented as an atomic emission spectroscopy (AES) technique. Laser-induced plasma utilized to analyze elements in materials (gases, liquids, and solids). In order to analyze elements in materials (gases, liquids, and solid). The Nd: YAG laser excitation source at 1064 nm with pulse width 9 ns is used to generate power density of 5.5 x 1012 MW/mm2, with optical spectrum in the range 320-740 nm. From this investigation, the soil sample analysis of the southern cities of Iraqi, it is concluded that the rich soil element of P, Si,
... Show MoreBackground: Soft Laser has been advantageous in medical applications and is widely used in clinical practice. It is applied because it doesn’t cause the significant thermal effects or tissue hurt when irradiated. The blood response to low power laser radiation provides information about processes of laser radiation interaction with live creatures. Objective: The aim of the current work was to evaluate the laser-induced changes of in vitro erythrocyte sedimentation rate (ESR), mean corpuscular volume (MCV), and mean corpuscular hemoglobin concentration (MCHC) in patients with breast cancer by irradiating a human blood sample using a green laser and comparing its effects before and after irradiation with the same power density (100mW/c
... Show MoreBackground: Crown preparation of vital teeth involve the removal of a sound tooth structure, and when enamel removed this lead to exposed dentin with an increase in the number of open dentinal tubules also the diameter of dentinal tubules will increase, furthermore lead to increase movement of fluids inside the tubules all that causes post preparation sensitivity. The aim of this study is to evaluate the effect of desensitizing by Er:Cr:YSGG laser on shear bond strength of prepared tooth and resin cement. Materials and methods: Thirty sound maxillary premolars, grouped into three groups(n=10). Group A is the control group, group B irradiated by Er:Cr:YSGG laser with (0.25 W, 20 Hz, 1
... Show MoreSuperconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.
In this paper, silicon carbonitried thin films were prepared by the method of photolysis of the silane (SiH4) and ethylene (C2H4) gases, with and without ammonia gas (NH3), which is represented by the ratio between the (PNH3) and (PSiH4 + PC2H4 + PNH3), (which assign by the letter X), X has the values (0, 0.13, 0.33). This method carried out by using TEA-CO2 laser, on glass substrate at (375 oC), deposition rate (0.416-0.833) nm/pulse thin film thickness of (500-1000) nm. The optical properties of the films were studied by using Absorbance and Transmittance spectrums in wavelength range of (400-1100) nm, the results showed that the electronic transitions is indirect and the energy gap for the SiCN films increase with increasing of nitrog
... Show MoreA single-crystalline semi-polar gallium nitride (11-22) was grown on m-plane (10-10) sapphire substrate by metal organic chemical vapor deposition. Three-step approach was introduced to investigate the grain size evolution for semi-polar (11-22) GaN. Such approach was achieved due to the optimized gallium to ammonia ratio and temperature variations, which led to high quality (11-22) oriented gallium nitride epilayers. The full width at half maximum values along (-1-123) and (1-100) planes for the overgrowth temperature of 1080°C were found to be as low as 0.37° and 0.49°, respectively. This was an indication of the enhanced coalescence and reduction in root mean square roughness as seen by atomic force microscopy. Surface analysi
... Show More