Low-intensity laser irradiation has been explored as an alternative, non-invasive method to encourage chronic wounds to heal. This study aimed to evaluate the effects of low level laser therapy (biostimulation) using semiconductor diode laser with wavelength (785 nm) on the enhancement of chronic wound healing. Fifty patients with chronic wounds were selected to be treated with Low Level Laser Therapy. Their ages ranged between 1 to 76 years. The wound sites were distributed in the lower limb, upper limb, trunk , perineum and head (70%,14%,12%,2%,2%, respectively). Application of laser therapy by noncontact method few millimeters from the skin for 15 minutes per one session twice weekly for two months ; ie,16 sessions for each patient. Results: The responses of wounds (56%), 12 patients with more than toward Low Level Laser Therapy LLLT were different as fallow; 28 patients had complete healing 50% healing (24%),8 patients with less than 50% healing (16%) and 2 of patients did not heal (4%).Conclusions: LLLT is an effective modality for treating chronic wounds. LLLT is an effective method in treating chronic wounds in patients with comorbidity and contraindications or precautions for surgery like epilepsy and chronic hepatitis carrier.
The exercise of citizenship behaviors and their impact on customer loyalty (An analytical study from the perspective of workers in the National Insurance Company).
The Research aims to find out the degree of customers National Insurance company for customer citizenship behavior and its impact on the level oh loyalty from the perspective of employess in the company, as well as the statement of the differences in the answers of employees according to their personality traits. To achieve the goals of research has been the use of the questionnaire as a tool for the collection and distribution of data on a sample of (90) individuals, as was the use of statistical program (SPSS) in the process of statistical analysis methods (mean, sta
... Show MoreThe influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
The study aimed to measure the effect of applying the disclosure and transparency standards criteria adopted by the Saudi Arabian Monetary Authority on improving performance indicators in the Saudi banking sector, by measuring the extent of the impact of the bank's financial indicators represented by liquidity, profitability and return on assets in Saudi banks by applying the criteria of disclosure and transparency, which is one of the Main principles in the list of governance, which was approved by the Saudi Arabian Monetary Authority. The analytical approach was followed to achieve the goal of the study, as the financial statements of Saudi banks were analyzed during a period of 8-year to test four hypotheses related to measuri
... Show MoreAbstract
Much attention has been paid for the use of robot arm in various applications. Therefore, the optimal path finding has a significant role to upgrade and guide the arm movement. The essential function of path planning is to create a path that satisfies the aims of motion including, averting obstacles collision, reducing time interval, decreasing the path traveling cost and satisfying the kinematics constraints. In this paper, the free Cartesian space map of 2-DOF arm is constructed to attain the joints variable at each point without collision. The D*algorithm and Euclidean distance are applied to obtain the exact and estimated distances to the goal respectively. The modified Particle Swarm Optimization al
... Show MoreThe current study aims at using non-hatchable artemia eggs of local origin and making use of these eggs by decapsulating and presenting them as food for the larvae of the Cyprinus carpio as a source of animal protein with high nutritional value instead of throwing them away. The results showed that the second parameter (A2) was highly significant at the level (P≤0.05) in the growth rates of the larvae that were fed on decapsulated artemia eggs alone, and it was better than the two control parameters (A1), in which the larvae were fed with feed designated for Cyprinus carpio fish. It also outperformed the third parameter (A3), in which the feed was mixed with artemia eggs with 50% decapsulation, which also outperformed the control paramete
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreVariable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show More