In this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostructured ZnO catalyst were exposed under sunlight and lasers with (632.8,532 and 405 ) with 1.6 mW\mm2 power density irradiation for (0,30,60 and 90) minutes. UV-VIS Spectrometer was used to evaluate the photodegradiation of MB with and without annealed nanostructured ZnO catalyst where an appreciable photocatalytic generation of hydroxyl was radicals exhibited due to increasing charge separation rate and decreasing recombination rate .Nanostructured ZnO Overall results show that MB degradation achieved 66% after 90 minutes using 405nm laser irradiation, while the reaction rate constant that fits a pseudo-first order kinetics (ka) is 0.011min-1 compared to 0.0001min-1 using MB alone . This study proved that 405 nm laser and sun light are highly efficient sources to enhance interfacial charge transfer to improve photodegredation of MB dye using annealed nanostructured ZnO.
ABSTRACT
This study was conducted to determine the effect of various levels of hump fat (HF) used in manufacturing of camel, beef and chicken sausage to understand the effect of (HF) on physicochemical composition sausage, Different levels of hump fat (5, 7, and 10 %) were used, physicochemical compositions like (moisture, protein, fat, Ash, water holding capacity, shrinkage, cooking loss and pH) were determined. Results of the study revealed that moisture content showed high significant differences (P≤0.01)among treatments groups, Camel sausage and beef sausage tended to have highest values while chicken sausage reported the lowest value. The study showed no significant difference (P≤0.05) among the
... Show MoreNew series of 4,4'-((2-(Aryl)-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(methylene))Diphenol(3a-g) was successfully synthesized from cyclization of the reduction product of bis Schiff bases (2) with aryl aldehydes bearing phenolic hydroxyl in the presence of acetic acid. The structure of these compounds was identified from FT-IR, 1H NMR, 13C NMR and EIMs. The Antioxidant capability was screened by DPPH and FRAP assays. Both assays showed antioxidant capability more than BHT as well. Compounds 3b and 3c showed antioxidant capacity slightly less than ascorbic acid. The docking study for theses compound was carried out as III DNA polymerase inhibitor. The results of docking demonstrated that the increase in hinderances around phenolic hydr
... Show MoreNew series of 4,4'-((2-(Aryl)-1H-benzo[d]imidazole1,3(2H)-diyl)bis(methylene))Diphenol(3a-g) was successfully synthesized from cyclization of the reduction product of bis Schiff bases (2) with aryl aldehydes bearing phenolic hydroxyl in the presence of acetic acid. The structure of these compounds was identified from FT-IR, 1H NMR, 13C NMR and EIMs. The Antioxidant capability was screened by DPPH and FRAP assays. Both assays showed antioxidant capability more than BHT as well. Compounds 3b and 3c showed antioxidant capacity slightly less than ascorbic acid. The docking study for theses compound was carried out as III DNA polymerase inhibitor. The results of docking demonstrated that the increase in hinderances around phenolic hydroxyl for t
... Show MoreWastewater treatment plants operators prefer to make adjustments because they are more cost effective, to use the existing tank instead of building new ones. In this case an imported materials would be used as bio-loads to increase biomass and thus maintain efficiency as the next organic loading increases.In the present study, a local substance "pumice stone" was used as a biological carrier in the aeration tank, and the experiments were carried out in five stages: without biological carriers, filling ratio of 4%,10%,20%, and25% with pumice stone, the maximum organic loading at each stage (1.1884, 1.2144, 1.9432, 2.7768, 3.3141)g BOD /l.d respectively.Other experiments were carried out to determine the best filling ratio, the SS remova
... Show MoreDepletion of fossil fuel is one of the main reasons why the bioethanol has become popular. It is a renewable energy source. In order to meet the great demand of bioethanol, it is best that the bioethanol production is from cheap raw materials. Since the golden shower fruit is not being utilized and is considered as waste material, hence, this study was conducted to make use of the large volume of the residue as feedstock to test its potential for bioethanol extraction.The main goal of this study is to obtain the most volume of bioethanol from the golden shower fruit liquid residue by the factors, days of fermentation (3, 5, and 7 days) and sugar concentration (15, 20 and 25 brix) of the liquid residue. Also, part of the study is to compu
... Show MoreIn the present work, the behavior of thick-walled cylinder of elasto-plastic material (polymeric material) has been studied analytically. The study is based on modified Von-Mises yield criterion (for non metallic material). The equations of stress distribution are obtained for the cylinder under general cases of elastic expansion, plastic initiation and elastic-plastic expansion.
A computer program is developed for evaluating the stress distribution. The solution is carried out for worst boundary conditions when the cylinder is subjected to the combination of pressure load, inertia load, and temperature gradient.
The results are presente
... Show MoreIn this research study the effect of irradiation by (CW) CO2 laser on some optical properties of (Cds) doping by Ni thin films of (1)µm thickness has been prepared by heat evaporation method. (X-Ray) diffraction technique showed the prepared films before and after irradiation are ploy crystalline hexagonal structure, optical properties were include recording of absorbance spectra for prepared films in the range of (400-1000) nm wave lengths, the absorption coefficient and the energy gap were calculated before and after irradiation, finally the irradiation affected (CdS) thin films by changing its color from the Transparent yellow to dark rough yellow and decrease the value absorption coefficient also increase the value of energy gap.
Polycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for
Polycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4
... Show MoreBackground: Laser is a novel physical therapy technique used to treat various conditions, including wound healing, inhibition of bacterial growth, and postoperative wounds. High-power pulsed alexandrite laser therapy is one of the most prevalent forms of laser therapy, which is a noninvasive method for treating various pathological conditions, thereby enhancing functional capacities and quality of life. It is a modern medical and physiotherapeutic technology. Generally, the Alexandrite laser emits infrared light with a wavelength of 755 nm, allowing it to propagate and penetrate tissues. Objective: This study focused on the application of a high-power pulsed alexandrite laser in vitro to evaluate the effect of a pulsed alexandrite l
... Show More