Water pollution has created a critical threat to the environment. A lot of research has been done recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS based on colloidal Ag nanoflowers. The chemical method was used to synthesize nanoflowers from silver ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This nanoflowers SERS action in detecting Na3PO4 was reported and analyzed concerning both shape and size using a 532 nm laser. We observed that the nanoflower's structure produced strong SERS signals. The increase in the SERS signal is related to the deposition of Na3PO4 molecules in the aggregated silver nanostructure in the solution. The concentration of Na3PO4 plays a main role in detection since the Raman signal becomes stronger as the concentration increases. The highest phosphate analytical enhancement factor obtained for SERS in colloidal nanoflowers was 1.7×103 at 0.7×10-6 M which was the lowest concentration.
The hydrodynamics behavior of gas - solid fluidized beds is complex and it should be analyzed and understood due to its importance in the design and operating of the units. The effect of column inside diameter and static bed height on the minimum fluidization velocity, minimum bubbling velocity, fluidization index, minimum slugging velocity and slug index have been studied experimentally and theoretically for three cylindrical columns of 0.0762, 0.15 and 0.18 m inside diameters and 0.05, 0.07 and 0.09 m static bed heights .The experimental results showed that the minimum fluidization and bubbling velocities had a direct relation with column diameter and static bed height .The minimum slugging velocity had an
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThe cement industry is considered one of the strategic industries, because it is directly related to construction work and cement is used as a hydraulic binder. However, it is a simple industry compared to major industries and depends on the availability of the necessary raw materials. This study focuses on optimizing and coordinating the location of raw materials needed for the cement manufacturing in Wasit Governorate in Iraq. Field works include detailed reconnaissance, topographic work, and description and sampling of 24 lithological sections that represent the carbonate deposits, which crop out in the area. The investigated area has the following specifications: The weighted aver