Background: Crown preparation of vital teeth involve the removal of a sound tooth structure, and when enamel removed this lead to exposed dentin with an increase in the number of open dentinal tubules also the diameter of dentinal tubules will increase, furthermore lead to increase movement of fluids inside the tubules all that causes post preparation sensitivity. The aim of this study is to evaluate the effect of desensitizing by Er:Cr:YSGG laser on shear bond strength of prepared tooth and resin cement. Materials and methods: Thirty sound maxillary premolars, grouped into three groups(n=10). Group A is the control group, group B irradiated by Er:Cr:YSGG laser with (0.25 W, 20 Hz, 10%water and air), group C irradiated by Er:Cr:YSGG laser with (0.5 W, 20 Hz, 10% water and air). Results: SEM examination showed complete occlusion of opened dentinal tubules after laser irradiation of both groups that irradiated with laser. Statistical analysis showed significant increase in surface roughness in group B and C. SBS was significantly increase in group B with no significant increase in group C. Conclusion: Er:Cr:YSGG laser can occlude open dentinal tubules without and adverse effect on the retention of the restoration, on the contrary it increase bonding strength. And this increasing was significant in group B with (0.25W, 20 Hz, 10 % water and air). suggestion: so the parameters used in group B (0.25 W, 20Hz, 10 % water and air) is recommended for desensitizing prepared tooth and induce enhancement to the bonding strength of resin to tooth surface.
In this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied. Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.
The current study is concerned with the analysis of spatial and temporal to death the elderly population in the city of Baghdad and at the level of administrative units Minor (districts and the areas) depending on the general population census of the province of Baghdad, data for 1997 and data from the Ministry of Health Department of Health and Vital Statistics for 2013.
The study showed differing age and quality of mortality rates at the level of administrative units of the study area, and notes the high mortality rates of elderly people of all age groups in 2013 compared to 1997, and this is due to security conditions after the USA occupation, and the accompanying conditions have affected the increase in mortality rates.
The problem of the study and its significance:
Due to the increasing pressures of life continually, and constant quest behind materialism necessary and frustrations that confront us daily in general, the greater the emergence of a number of cases of disease organic roots psychological causing them because of severity of a lack of response to conventional treatments (drugs), and this is creating in patients a number of emotional disorders resulting from concern the risk of disease
That is interested psychologists and doctors searchin
... Show MoreCarbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.
Fiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano
... Show MoreIn this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage
... Show MoreTool wear is a major problem in machining operations because the resulting material loss gradually changes of the machine tool. There many factors may leads to material loss like; friction, corrosion, and also it’s happened by rubbing during machining processes between the work piece and the tool. Dimensional accuracy of the work piece, and also the surface finish will be reducing by tool wear. It can also increase cutting force. In this study, we focused on the effect of the coating process on crater wear problems. Crater wear is caused by the flow between the chip and the rake face of the tool, whereas flank wear is caused by the contact between the tool and the work piece. In reducing crater wear, aluminum titanium nitride (AlTiN) u
... Show MoreBackground: This study aimed to evaluate the effect addition of polyester fibers on the some mechanical properties of heat cured acrylic resin (implant strength, flexural strength and hardness) Materials and methods: Ninety specimens were used in the study. Thirty specimens were used for impact strength measurements (80mm X 10mm X 4mm) length, width and thickness respectively. The specimens divided into three test groups (n=10), first group formed from heat cure acrylic resin without fiber reinforcement. Second group was formed from heat cure acrylic resin was reinforced with 2 mm length polyester fiber and third group was formed from heat cure acrylic resin reinforced with 4mm length polyester fiber, impact strength measured by impact test
... Show MoreThe present theoretical study analyzes the legacy of the Chicago School of Urban Sociology and evaluates it in the light of the growth and development of Chicago City and the establishment of sociology in it. Sociology has become an academic discipline recognized in the United States of America in the late nineteenth century, particularly, after the establishment of the first department of sociology in the University of Chicago in 1892. That was during the period of the rapid industrialization and sustainable growth of the Chicago City. The Chicago School relied on Chicago City in particular, as one of the American cities that grew and expanded rapidly in the first two decades of the twentieth century. At the end of the nineteenth centur
... Show MoreIn this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show More