Abstract: Objectives: To investigate the effect of temperature elevation on the bonding strength of resin cement to the zirconia ceramic using fractional CO2 laser. Background: Fractional CO2 laser is an effective surface treatment of zirconia ceramic, as it increases the bonding strength of zirconia to resin cement. Methods: Thirty sintered zirconia discs (10 mm diameter, 2 mm thickness) were prepared and divided to three groups (N=10) and five diffident pulse durations were used in each group (0.1, 0.5, 1, 5 and 10 ms). Group A was treated with 10 W power setting, group B with 20 W and group C with 30 W. During laser irradiation, temperature elevation measurement was recorded for each specimen. Luting cement was bonded to the treated zirconia surfaces and cured for 30 seconds. Shear bond strength was evaluated by a testing machine (universal) with bond failure mode determination. Results: The lowest temperature elevation measurement of the irradiated specimen which gave maximum shear bond strength was about 1.6±0.3 Ċ higher than ambient room temperature (27±0.2 ºC). Apparent micromechanical irregularities were seen in the treated samples and cracks formation with increased pulse duration and power setting were also observed. Conclusions: The temperature elevation is a vital factor in the surface roughness of zirconia ceramic with fractional CO2 laser irradiation and the lowest temperature elevation at best shear bond strength of zirconia ceramic to the resin cement is satisfied with the shorter pulse duration of 0.1 millisecond.
The V2O5 films were deposited on glass substrates which produce using "radio frequency (RF)"power supply and Argon gas technique. The optical properties were investigated by, UV spectroscopy at "radio frequency" (RF) power ranging from 75 - 150 Watt and gas pressure, (0.03, 0.05 and 0.007 Torr), and substrate temperature (359, 373,473 and 573) K. The UV-Visible analysis shows that the average transmittance of all films in the range 40-65 %. When the thickness has been increased the transhumance was decreased from (65-40) %. The values of energy band gap were lowered from (3.02-2.9 eV) with the increase of thickness the films in relation to an increase in power, The energy gap decreased (2.8 - 2.7) eV with an increase in the pressure and
... Show MoreBackground: This study was performed to determine the effect of aging of different types of composite material restorations on: Shear bond strength (SBS) to light cure and no mix chemical cure orthodontic adhesives with sapphire bracket and the debonding failure sites. Materials and methods: One hundred forty four composite disks were made from three different composite resin materials which are: 3M Filtek Z250, 3M filtek Z350 and 3M Valux plus, each group with (48) disks each, then according to the duration of storage each group was subdivided into two equal groups one of them stored for one day and the other was stored for one month, then each group was further subdivided into two equal subgroups with (12) disks each one bonded with ligh
... Show MoreBackground: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and me
... Show MoreBackground: Color stability of glass ionomers (GIs) could be affected by many factors such as pH and consumption of liquid medications like antibiotics. Most common antibiotics used during childhood are amoxicillin suspension (AM.S) and azithromycin suspension (AZ.S) which have acidic and basic pH respectively. Aim: to evaluate and compare the effect of AM.S and AZ.S on color stability of nano resin-modified GI. Methods: Thirty disc of nano resin-modified glass ionomer (2mm height x 4mm diameter) were divided into three groups (n=10 for each) and independently exposed to AM.S, AZ.S, and artificial saliva (A.S.). Color stability was evaluated in triplicate by VITA Easyshade® before and after three immersion protocols, repeated over a thr
... Show MoreBackground: Color stability of glass ionomers (GIs) could be affected by many factors such as pH and consumption of liquid medications like antibiotics. Most common antibiotics used during childhood are amoxicillin suspension (AM.S) and azithromycin suspension (AZ.S) which have acidic and basic pH respectively. Aim: to evaluate and compare the effect of AM.S and AZ.S on color stability of nano resin-modified GI. Methods: Thirty disc of nano resin-modified glass ionomer (2mm height x 4mm diameter) were divided into three groups (n=10 for each) and independently exposed to AM.S, AZ.S, and artificial saliva (A.S.). Color stability was evaluated in triplicate by VITA Easyshade® before and after three immersion protocols, repeated over
... Show MoreBackground: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show MoreIn this paper, an experimental study has been conducted regarding the indication of resonance in chaotic semiconductor laser. Resonant perturbations are effective for harnessing nonlinear oscillators for various applications such as inducing chaos and controlling chaos. Interesting results have been obtained regarding to the effect of the chaotic resonance by adding the frequency on the systems. The frequency changes nonlinear dynamical system through a critical value, there is a transition from a periodic attractor to a strange attractor. The amplitude has a very relevant impact on the system, resulting in an optimal resonance response for appropriate values related to correlation time. The chaotic system becomes regular under
... Show More
