This research aims to design a high-speed laser diode driver and photodetector, the result is the
design of the high-speed laser diode driver with a short pulse of 10 ns at 30 KHz frequency and the
delivered maximum pulse voltage is 5.5 mV. Also, its optical output power of the laser diode driver is
about 2.529 mW for the centroied wavelength 1546.7 nm with FWHM of 286 pm and (1270-1610) nm.
The design of the circuit based on bipolar transistor where the input pulse signal is simply generated by
an arduino kit with 15 kHz frequency and then compensated to trigger to small signal amplifier which
was is simply NPN C3355 transistor and the output is a current driver to the laser diode. OptiSystem
software and Electronic Workbench tools were used for the design of high speed laser diode diver and its
simulation
In the present work usedNd:YAG laser systems of different output characteristic were employed to study the drilling process of material used in scientific and industrial fields. This material include Manganese hard steel. Our study went into the affecting parameters in drilling of Manganese hard steel by laser. Drilling process is achieved through material absorption of part of the incident laser beam. It is the resultant of interfering both, laser beam and material properties and the focusing conditions of the beam. The results as shown that the increase in the laser pulse energy over the used level has raised the hole diameter, depth and increased the hole taper. In addition to that a hole taper was affected by the laser energy, the fo
... Show MoreThe aim of this research is to design and construct a semiconductor laser range finder
operating in the near infrared range for ranging and designation. The main part of the range finder is the
transmitter which is a semiconductor laser type GaAs of 0.904 mm wavelength with a beam expander,
and the receiver with its collecting optics. The characteristics of transmitter pulse width were 200ns and
threshold current 10 Amp. and maximum operating current 38 Amp. The repetition rate was set at 660 Hz
and maximum output power about 1 watt. The divergence of the beam was 0.268o. A special computer
code was used for optimum optical design and laser spot size analysis and for calculation of atmosphere
attenuation.
In this research , Aprocess ( LICVD) was used for producing silicon nitride powders with chemical compositon Si3N4 ,by using TEA-Co2 Laser to induc reaction in the gas phase, NH3 was used as on additive to SiH4. Reactant gases that were vibrationaly heated by absorbing energy emitted from TEA-Co2 Laser decomposes throug coillsion assisted multiple photon dissociation causing Si3N4 powders. By the dependence of the LICVD process on varios parameters such as Laser intensity , total gas pressure, partial pressures of SiH4 and NH3 were investigated. Dissociation rate as a function of Laser intensity and pressure was investigated. The powders obtained exhibit various colors from brown which is rich in Si to white.This
... Show MoreIn this paper, silicon carbonitried thin films were prepared by the method of photolysis of the silane (SiH4) and ethylene (C2H4) gases, with and without ammonia gas (NH3), which is represented by the ratio between the (PNH3) and (PSiH4 + PC2H4 + PNH3), (which assign by the letter X), X has the values (0, 0.13, 0.33). This method carried out by using TEA-CO2 laser, on glass substrate at (375 oC), deposition rate (0.416-0.833) nm/pulse thin film thickness of (500-1000) nm. The optical properties of the films were studied by using Absorbance and Transmittance spectrums in wavelength range of (400-1100) nm, the results showed that the electronic transitions is indirect and the energy gap for the SiCN films increase with increasing of nitrog
... Show MoreA Mini-TEA CO2 laser system was designed and operated to obtain a pulse at 10.6 μm. Output energy of 30 mJ, with preionization pins, and pulse duration of 100ns were obtained. While an output energy of 6mJ and pulse duration of 100 ns in absence of pre-ionization were obtained. The system was operated with Ernest profile main-discharge electrodes. Dependencies of supply voltage and output laser energy on the pressure inside laser cavity were investigated as well as dependencies of supply voltage and output energy on the main capacitor(8CO2 : 8N2 : 82He :2CO). Efficiency of was calculated to be 4.4%.
This project introduces a prospective material for photonic laser applications. The material is olive oil which is classified as organic compound, having a good nonlinear optical properties candidate to be used in photonic applications. A high purity sample of olive oil has been used. The theoretical calculation to generate third harmonic wave using olive oil has been determine using MATLAB program. THG (λ=355nm) intensity has been determined at two cases of sample thicknesses 1mm and 10mm. The minimum threshold incident intensity to obtain THG intensity are equal Iω=7530 mW/cm2 at L=1mm and Iω= 6220 mW/cm2 at L=10mm. The possibility of generation of third harmonic in olive oil inside
... Show MoreAssessment the actual accuracy of laboratory devices prior to first use is very important to know the capabilities of such devices and employ them in multiple domains. As the manual of the device provides information and values in laboratory conditions for the accuracy of these devices, thus the actual evaluation process is necessary.
In this paper, the accuracy of laser scanner (stonex X-300) cameras were evaluated, so that those cameras attached to the device and lead supporting role in it. This is particularly because the device manual did not contain sufficient information about those cameras.
To know the accuracy when using these cameras in close range photogrammetry, laser scanning (stonex X-300) de
... Show MoreFractional Er: YAG laser resurfacing is increasingly used for treating rhytides and photo aged skin because of its favorable benefit‐risk ratio. The multi-stacking and variable pulse width technology opened a wide horizon of rejuvenation treatments using this type of laser. To evaluate the efficacy and safety of the use of fractional 2940 nm Er: YAG laser in facial skin rejuvenation. Twelve female patients with mean age 48.3 years and multiple degrees of aging signs and solar skin damages, were treated with 2 sessions, one month apart by fractional Er: YAG laser. Each session consisted of 2 steps, the first step employed the use of the multi stack ablative fractional mode and the fractional long pulsed non-ablative mode settings were u
... Show MoreIn this paper , the CO2 laser receiver system is designed and studied, with wavelength laser 10.6 ?m in room temperature , and to evaluate the performance and discussion it via the package of optical design (ZEMAX), from its output the Spot Diagram is measured through RMS ,and from the Ray fan plot , the aberrations is found which is the normal error for the best focus named (under corrected ) , the other output was the Geometric Encircled Energy in the spot diagram . and found that the radius of spot diagram at 80% (R80%) from the total energy ,and focal shift .The designed system have high efficiency and low cost .
SiO2 nanostructure is synthesized by the Sol-Gel method and thin films are prepared using dip coating technique. The effect of laser densification is studied. X-ray Diffraction (XRD), Fourier Transformation Infrared Spectrometer (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) are used to analyze the samples. The results show that the silica nanoparticles are successfully synthesized by the sol-gel method after laser densification. XRD patterns show that cristobalite structure is observed from diode laser (410 nm) rather than diode laser (532 nm). FESEM images showed that the shape of nano silica is spherical and the particles size is in nano range (? 100 nm). It is concluded that the spherical nanocrystal structure of silica
... Show More