This research aims to design a high-speed laser diode driver and photodetector, the result is the
design of the high-speed laser diode driver with a short pulse of 10 ns at 30 KHz frequency and the
delivered maximum pulse voltage is 5.5 mV. Also, its optical output power of the laser diode driver is
about 2.529 mW for the centroied wavelength 1546.7 nm with FWHM of 286 pm and (1270-1610) nm.
The design of the circuit based on bipolar transistor where the input pulse signal is simply generated by
an arduino kit with 15 kHz frequency and then compensated to trigger to small signal amplifier which
was is simply NPN C3355 transistor and the output is a current driver to the laser diode. OptiSystem
software and Electronic Workbench tools were used for the design of high speed laser diode diver and its
simulation
Echocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreLymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreThe Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr
... Show MorePersistence of antibiotics in the aquatic environment has raised concerns regarding their potential influence on potable water quality and human health. This study analyzes the presence of antibiotics in potable water from two treatment plants in Baghdad City. The collected samples were separated using a solid-phase extraction method with hydrophilic-lipophilic balance (HLB) cartridge before being analyzed. The detected antibiotics in the raw and finished drinking water were analyzed and assessed using high-performance liquid chromatography (HPLC), with fluorometric detector and UV detector. The results confirmed that different antibiotics including fluoroquinolones and
The current research aimed to analyze the importance, correlation and the effect of independent variables represented by marketing variables on the dependent variable represented by local brand, through taking ENIEM as a model for this study, which represents a sensitive sector for the Algerian consumer. The results of the study evinced that the Algerian consumer has a positive image toward the brand ENIEM given marketing variables which has acquired considerable importance to this consumer. Also, the results of this study showed a statistically significant correlation between marketing variables and good perception toward the brand ENIEM, at the same time, the existence of a statistically significant effect for each of these variables o
... Show Moreالمسؤولية المدنية الناشئة عن الاعلان التجاري
يتناول البحث دراسة مسؤولية المستثمر المدنية عن تلوث البيئة من حيث اساسها واركانها واثرها
يتناول البحث دراسة تطبيق نظرية اساءة استعمال الحق في مجال المسؤولية التعاقدية