In this research, a low cost, portable, disposable, environment friendly and an easy to use lab-on-paper platform sensor was made. The sensor was constructed using a mixture of Rhodamine-6G and gold nanoparticles also Sodium chloride salt. Drop–casting method was utilized as a technique to make a platform which is a commercial office paper. A substrate was characterized using Field Emission Scanning Electron Microscope, Fourier transform infrared spectroscopy, UV-visible spectrophotometer and Raman Spectrometer. Rh-6G Raman signal was enhanced based on Surface Enhanced Raman Spectroscopy technique utilized gold nanoparticles. High Enhancement factor of Plasmonic commercial office paper reaches up to 0.9 x105 because of local surface plasmonic resonance. While for salty plasmonic commercial office paper, it grows up to 1.11 x 105. Particularly the unique properties of commercial office paper like low porosity, flexibility, portable, and high hydrophobicity are well suited for analysis of sample with arbitrary shapes and trace concentration as well as easily transferred to lab. From all the above, it is an excellent candidate for using as a lab-on-paper.
Abstract: The article aimed to formulate an MLX binary ethosome hydrogel for topical delivery to escalate MLX solubility, facilitate dermal permeation, avoid systemic adverse events, and compare the permeation flux and efficacy with the classical type. MLX ethosomes were prepared using the hot method according to the Box–Behnken experimental design. The formulation was implemented according to 16 design formulas with four center points. Independent variables were (soya lecithin, ethanol, and propylene glycol concentrations) and dependent variables (vesicle size, dispersity index, encapsulation efficiency, and zeta potential). The design suggested the optimized formula (MLX−Ethos−OF) with the highest desirability to perform the
... Show MoreA pseudo-slug flow is a type of intermittent flow characterized by short, frothy, chaotic slugs that have a structure velocity lower than the mixture velocity and are not fully formed. It is essential to accurately estimate the transition from conventional slug (SL) flow to pseudo-slug (PSL) flow, and from SL to churn (CH), by precisely predicting the pressure losses. Recent research has showed that PSL and CH flows comprise a significant portion of the conventional flow pattern maps. This is particularly true in wellbores and pipelines with highly deviated large-diameter gas-condensate wellbores and pipelines. Several theoretical and experimental works studied the behavior of PSL and CH flows; however, few models have been suggested to pre
... Show MoreThis work involves theoretical and experimental studies for seven compounds to calculate the electrons spectrum and NLO properties. The theoretical study is done by employing the Time Depending Density Functional Theory TD-DFT and B3LYP/high basis set 6-311++G (2d,2p), using Gaussian program 09. Experimental study by UV/VIS spectrophotometer device to prove the theoretical study. Theoretical and experimental results were applicable in spectrum and energy gap values, in addition to convergence theoretically the energy gap results from ΔEHOMO-LUMO and UV/VIS. spectrum. Consider the theoretical method very appropriate to compounds that absorb in vacuum UV.
The corrosion inhibition effect of a new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR) and potentiodynamic polarization. The obtained results indicated that the new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) (FSFD) has a promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. The density functional theory (DFT) study was performed on the new furan derivative (FSFD) at the B3LYP/6-311G (d, p) basis set level to explore the relation between their inhibition efficiency and molecular electro
The main objective of this paper is to develop and validate flow injection method, a precise, accurate, simple, economic, low cost and specific turbidimetric method for the quantitative determination of mebeverine hydrochloride (MbH) in pharmaceutical preparations. A homemade NAG Dual & Solo (0-180º) analyser which contains two identical detections units (cell 1 and 2) was applied for turbidity measurements. The developed method was optimized for different chemical and physical parameters such as perception reagent concentrations, aqueous salts solutions, flow rate, the intensity of the sources light, sample volume, mixing coil and purge time. The correlation coefficients (r) of the developed method were 0.9980 and 0.9986 for
... Show More