Many conservative sphincter-preserving procedures had been described to be effective in
healing of anal fistula without excision or de roofing.
Objective: To verify the outcome of mere photocoagulation of the fistula tract on healing of low anal
fistula.
Materials and Methods: Using 810nm diode laser, the tracts of low anal fistulae in a cohorts of six male
patients (mean age of 32 yr) had been photocoagulated by retrograde application of laser light through an
orb tip optical fiber threaded in to the tract. Swabs for culture and sensitivity testing were obtained before
and after laser application. Patients were followed up regularly to announce fistula healing.
Results: Mean laser exposure time was 6.6 min., mean operative time was 19 min., mean hospital stay
was 5.9 hrs and mean fistula closure time was 7.7 days. The negative immediate post laser exposure
swabs indicate that laser may have a bacteria killing power. There were no evidences of incontinence or
recurrence within the mean follow up period of 9 weeks. The feasibility of using the selected laser and
accessory was excellent. The basic laser-tissue interaction was thermal photocoagulation without
carbonization.
Conclusions and Recommendations: Mere photocoagulation of the fistula tract may heal a low anal
fistula. Within the chosen parameters of laser application, there was no evidence of damage to the anal
sphincter. It is recommended that larger number of cases to be done to allow for proper statistical
analysis. High, complicated, and recurrent cases may be included. A longer follow up period to assess
intermediate and long term recurrences is recommended.
Beryllium Zinc Oxide (BexZn1-xO) ternary nano thin films were deposited using the pulsed laser deposition (PLD) technique under a vacuum condition of 10-3 torr at room temperature on glass substrates with different films thicknesses, (300, 600 and 900 nm). UV-Vis spectra study found the optical band gap for Be0.2Zn0.8O to be (3.42, 3.51 and 3.65 eV) for the (300, 600 and 900nm) film thicknesses, respectively which is larger than the value of zinc oxide ZnO (3.36eV) and smaller than that of beryllium oxide BeO (10.6eV). While the X-ray diffraction (XRD) pattern analysis of ZnO, BeO and Be 0.2 Zn 0.8 O powder and nano-thin films indicated a hexa
... Show MoreIn this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
This study evaluated the structural changes of enamel treated by the Regenerate system and carbon dioxide (CO2) laser against acid challenge. Thirty human enamel slabs were prepared and assigned into three groups: Group I: untreated (control); Group II: treated with the Regenerate system; and Group III exposed to CO2 laser. All specimens were subjected to an acid challenge (pH 4.5–7.0) for 14 days. Specimens were evaluated and compared at 120 points using five Raman microspectroscopic peaks; the phosphate vibrations ν1, ν2, ν3, and ν4 at 960, 433, 1029, and 579 cm−1, respectively, and the carbonate at 1070 cm−1, followed by Vickers microhardness test. The ratio of carbonate to phosphate was correlated to the equivalent mic
... Show MoreThis paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.
In this study, silver nanoparticles (AgNPs) were synthesized using a cold plasma technique and a plasma jet. They were then used to explore how photothermal treatment may be used to treat lung cancer (A549) and normal cells (REF) <i>in vitro</i>. The anti-proliferative activity of these nanoparticles was studied after A549 cells were treated with (AgNPs) at various concentrations (100%, 50%, or 25%) and exposure times (6 or 8 min) of laser after 1 h or 24 h from exposed AgNPs. The highest growth inhibition for cancer cells is (75%) at (AgNPs) concentration (100%) and the period of exposure to the laser is (8 min). Particle size for the prepared samples varied according to the diameter o
... Show MoreAbstract
This research was to provide a definition of quality, dimensions and concepts, whether traditional or modern concept, as well as review the dimensions of quality in higher education and vision and mission with the overall objectives of the Statistics Department.
After reviewing quality goals and purposes achieved as well as the mechanisms used to achieve them. and use standard Six-Sigma as one of the methodologies used in quality with the historical roots of using this methodology and methods applied and their definitions t
... Show MoreScientists are investigating the efficacy of different biosorbents for promoting economic and environmental viability in purifying contaminants. Among the primary by-products of biodiesel production is waste microalgae biomass, which has the potential to be used as a cheap biosorbent for the treatment of pollution. In the present study, the biomass left over after extracting the chlorella vulgaris was used to test the potential biosorption of CIP from simulated aqueous solutions. Bisorbent's ability was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Analysis with a Fourier Transform Infrared Spectrometer revealed that C
... Show MoreTin oxide films (SnO2) of thickness (1 ?m) are prepared on glass substrate by post oxidation of metal films technique. Films were irradiated with Nd:YAG double frequency laser of wavelength (532 nm) pulses of three energies (100, 500, 1000) mJ. The optical absorption, transmission, reflectance, refractive index and optical conductivity of these films are investigated in the UV-Vis region (200-900) nm. It was found that the average transmittance of the films is around (80%) at wavelength (550 nm) and showed high transmission (? 90 %) in the visible and near infrared region. The absorption edge shifts towards higher energies, which is due to the Moss-Burstien effect and it lies at (4 eV). The optical band gap increased with increasing of ene
... Show More