Preferred Language
Articles
/
ijl-150
Warts Treatment by 810 nm Diode Laser Irradiation: A New Approach
...Show More Authors

The present work was done in an attempt to build systematic procedures for treating warts by 810 nm diode laser regarding dose parameters, application parameters and laser safety. The study was done in Al- Kindy Teaching Hospital in Baghdad, Iraq during the period from 1st October 2003 till 1st April 2004. Fifteen patients completed the treatment and they were followed for the period of 3 months. Recalcitrant and extensive warts were selected for the study. Patients were randomly divided into 3 groups to be treated by different laser powers 9, 12 and 15 W, power density of 286 W/cm2, 381W/cm2, 477 W/cm2 pulse duration of 0.2 s, interval of 0.2 s and repeated pulses were used. The mode of application was either circular or radial. Pain occurred for about 1 week after treatment especially on movement (when lesions near joint) to all group and power density. Oozing occurred from lesion with scales and oedema after laser treatment for about 1 week. Post-inflammatory hypo-pigmentation might occur after the lesion have healed completely. No recurrence of lesions after complete healing of lesions. Complete healing of the lesion was noticed, no scarring after complete healing of lesion. Diode laser therapy of recalcitrant and extensive viral warts could be considered as a valuable alternative to other more traditional techniques. This treatment can offer a good result in eliminating the verrucae and their sequelae of recurrence, scarring and the post-operative pain.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 30 2018
Journal Name
Iraqi Journal Of Physics
Design and constructions laser - induced breakdown spectroscopy system to determine the fertility of north Iraqi soil
...Show More Authors

Laser-Induced Breakdown Spectroscopy (LIBS) has been documented as an Atomic Emission Spectroscopy (AES) technique, utilising laser-induced plasma, in order to analyse elements in materials (gases, liquids and solid). The Nd:YAG laser passively Q-switched at 1064nm and 9ns pulse duration focused by convex lens with focal length 100 mm to generates power density 5.5×1012 Mw/mm2 with optical spectrum in the range 320-740 nm. Four soil samples were brought from different northern region of Iraq, northern region (Beiji, Sherkat, Serjnar and Zerkary).
The soil of the Northern region of Beige, Sherkat, Serjnar and Zarkary has abundant ratios of the elements P [0.08, 0.09, 0.18, 0.18] and Ca [0.61, 0.15, 0.92, 0.92] while it lack of Si [0.0

... Show More
View Publication
Crossref
Publication Date
Sun Jul 01 2012
Journal Name
Ieee Transactions On Geoscience And Remote Sensing
Echo Amplitude Normalization of Full-Waveform Airborne Laser Scanning Data Based on Robust Incidence Angle Estimation
...Show More Authors

View Publication
Scopus (25)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Analysis of Temperature and Residual Stress Distribution in CO2 Laser Welded Aluminum 6061 Plates Using FEM
...Show More Authors

This paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 12 2025
Journal Name
Journal Of Baghdad College Of Dentistry
The role of low level laser therapy on the expression of IL_1 beta in wound healing
...Show More Authors

Background: Low-level laser therapy (LLLT) has been extensively applied to improve wound healing due to some biostimulatory properties presented by laser arrays apparently able to accelerate the repair of soft tissue injuries. However, the role of proinflammatory interlukines not been studied yet. IL_1 ? represent one of the most important poroinflammatory interlukines that involved in wound healing. The goal of this study was to investigate the effect of 790-805nm diode laser on the expression of IL_1 ? during wound healing in mice. Materials and Methods: Standard-sized wounds (1.5cm) were carried out in the face of 96 white albino mice. Half of them underwent LLLT treatment (360 J/cm 2) at 790-805 nm delivered immediately after wound pro

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 10 2009
Journal Name
Iraqi Journal Of Laser
Simulation of passively Q-switched rate equation using saturable crystal Dy +2: CaF2 with ruby laser
...Show More Authors

The simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Thi – Qar Science
Enhanced of the Two photon Absorption in Nanostructure Wide Band gap Semiconductor CdS using femtosecond Laser
...Show More Authors

We observed strong nonlinear absorption in the CdS nanoparticles of dimension in the range 50-100 nm when irradiant with femtosecond pulsed laser at 800 nm and 120 GW/cm 2 irradiance intensity. The repetition rate and average power were 250 kHz and

View Publication
Publication Date
Thu Feb 07 2019
Journal Name
Iraqi Journal Of Laser
Laser Enhanced Photocatalyic Degradation of Methylene blue using Nanostructured ZnO Catalyst based on Interfacial Charge Transfer
...Show More Authors

In this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 18 2019
Journal Name
Journal Of Laser Applications
Testing and characterization of sintered β-tricalcium phosphate coat upon zirconia dental implant using Nd:YAG laser
...Show More Authors

This study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive

... Show More
View Publication
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Optik
High-purity narrow emission line display of titanium dioxide nanoparticles in laser dyes as random gains
...Show More Authors

In this work, the dyes Rhodamine B and Coumarin 102 containing titanium dioxide nanoparticles were used as scattering centers to fabricate a random gain medium. The laser dye was dissolved in hexanol and methanol solvent respectively. The titanium dioxide nanoparticles were synthesized by DC reaction magnetron spraying technique. The random-gain medium was made by adding 2.5 mg of titanium dioxide nanoparticles to Rhodamine and coumarin 102 dyes by coating the glass cell with two-sided titanium dioxide with high spectral efficiency and low production cost. A narrow line optical emission was detected at 565 nm for Rhodamine B and 534 nm for coumarin 102, where it was found that rhodamine B dye has FWHM 8 nm and coumarin dye 102 has FWHM 9 nm

... Show More
View Publication
Scopus (11)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Effect of Nd-YAG, XeCl, and Nitrogen Laser Radiation on Human Aorta , and Some Arterial Tissues
...Show More Authors

The effect of laser radiation on human aorta, coronary, and pulmonary arteries, and pulmonary veins has been investigated. Xenon-Chloride (eximer), Nitrogen, and Nd-YAG pulsed lasers of wavelengths 308, 337, and 1060 nm respectively were used. Their effects on fresh postmortem tissues, normal and diseased, was studied. The diameter and depth of ablation of the exposed tissues, in air, were measured as a function of many factors related to the type of laser and nature of the tissue. The effect of properties of the applied lasers, such as average power density and deposited energy density, on the exposed tissue surface were studied. The increase of these two parameters cause an increase in the depth and diameter of ablation. However the di

... Show More
View Publication Preview PDF