The main objective of this study is to determine the suitable excitation wavelengths for
urine components reaching to select the suitable lasers to execute the auto fluorescence due to their
high intensities. The auto fluorescence was measured at 305, 325 and 350 nm excitation wavelengths
for eleven urine samples which were also analyzed by conventional methods (chemical and
microscopic examination). Data manipulation using Matlab package programming language showed
that urine sample with normal chemical and biological components have emission peaks which are
different from the infected urine samples. Despite the complexity of the composition of urine,
fluorescence maxima can be observed. Most likely, the peaks observed do not result from a single
fluorescent urinary metabolite, but depend on differences in urine component that is changed
according the clinical situation of person
In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending
Fusobacterium are compulsory anaerobic gram-negative bacteria, long thin with pointed ends, it causes several illnesses to humans like pocket lesion gingivitis and periodontal disease; therefore our study is constructed on molecular identification and detection of the fadA gene which is responsible for bacterial biofilm formation. In this study, 10.2% Fusobacterium spp. were isolated from pocket lesion gingivitis. The isolates underwent identification depending on several tests under anaerobic conditions and biochemical reactions. All isolates were sensitive to Imipenem (IPM10) 42.7mm/disk, Ciprofloxacin (CIP10) 27.2mm/disk and Erythromycin (E15) 25mm/disk, respectively. 100% of
Urinary tract infections (UTIs) mean microbial pathogens in the urethra or bladder (lower urinary tract). Important risk factors for recurrent UTI include obstruction of the urinary tract, use of a bladder catheter or a suppressed immune system. This study aims to isolate and identify bacteria from patients with TCC-bladder cancer or patients with a negative cystoscope and estimate antibiotic susceptibility patterns and evaluate some of the virulence factors. From a total of 62 patients with TCC-BC or negative cystoscope, only 35 favorable bacterial growths were obtained, including Escherichia coli (UPEC), a significant bacterial isolate, and Stenotrophomonas maltophilia. The percentage of multi drug-resistance bacteria
... Show MoreLeishmaniasis is a transmissible infection brought about by an obligatory intracellular protozoan from the genus Leishmania. It occurs worldwide in tropical and subtropical regions and can be burdensome in resource-constrained countries. The infection ranges in severity from mild cutaneous lesions to more severe and sometimes life-threatening visceral and distorting mucocutaneous sicknesses. Importantly, cutaneous leishmaniasis (CL) is prevalent in the Middle East with a pooled prevalence of 12%. It imposes a significant health and socioeconomic burden
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreTransforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreIn this research, the kinetic studies of four isoenzymes of Asprtate aminotransferase, which partially purified from the urine of chronic renal failure patients were carried out .The four isoenzymes were obeyed Michaelis-Menton's equation and the optimum concentration of their substrate (Aspartic acid) was (166.5x10-3) mole/liter,and their Km values were determined. Four isoenzymesI,II,III,IV have shown an optimum pH at 7.4.The four isoenzymes obeyed Arrhenius equation up to 37º C and their Ea and Q10 constants were determined .
A simple, environmental friendly and selective sample preparation technique employing porous membrane protected micro-solid phase extraction (μ-SPE) loaded with molecularly imprinted polymer (MIP) for the determination of ochratoxin A (OTA) is described. After the extraction, the analyte was desorbed using ultrasonication and was analyzed using high performance liquid chromatography. Under the optimized conditions, the detection limits of OTA for coffee, grape juice and urine were 0.06 ng g−1, 0.02 and 0.02 ng mL−1, respectively while the quantification limits were 0.19 ng g−1, 0.06 and 0.08 ng mL−1, respectively. The recoveries of OTA from coffee spiked at 1, 25 and 50 ng g−1, grape juice and urine samples at 1, 25 and 50 ng mL
... Show MoreBackground: Cervical lymph nodes are prone to involved by a number of pathologic processes. They are common sites for lymphoma, metastasis, and reactive enlargement in a number of conditions. Aims of the study:-Clinical evaluation of patients with cervical lymphadenopathy. Differentiation between benign and malignant lymph nodes by means of ultra sounds (US) and Correlate the US findings with cytological and/or histopathological findings of cervical lymph nodes. Subjects, Materials and Methods:-The present study was carried out over a period of 6 months and included 81 patients of different age groups presenting with cervical lymphadenopathy. Each patient was examined clinically, then comprehensive sonographic examination of the neck for
... Show More