The spectral characteristics and the nonlinear optical properties of the mixed donor (C-480) acceptor (Rh-6G) have been determined. The spectral characteristics are studied by recording their absorption and fluorescence spectra. The nonlinear optical properties were measured by z-scan technique, using Q-switched Nd: YAG laser with 1064 nm wavelength. The results showed that the optimum concentration of acceptor is responsible for increasing the absorption and the emission bandwidth of donor to full range and to 242 nm respectively by the energy transfer process, also the efficiency of the process was increased by increasing the donor and acceptor concentration. The obtained nonlinear properties results of the mixture C-480/ Rh-6G showed a negative nonlinear refractive index and reverse saturation absorption. All the nonlinear optical parameters are linearly dependent with concentration. The origin of optical nonlinearity in the dye may be attributed to laser-heating induced nonlinear effect. Results show that mixture of laser dyes are effective nonlinear optical materials as compared to individual laser dyes.
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreThe road transportation system is considered as major component of the infrastructure in any country, it affects the developments in economy and social activities. The Asphalt Concrete which is considered as the major pavement material for the road transportation system in Baghdad is subjected to continuous deterioration with time due to traffic loading and environmental conditions, it was felt that implementing a comprehensive pavement maintenance management system (PMMS), which should be capable for preserving the functional and structural conditions of pavement layers, is essential. This work presents the development of PMMS with Visual inspection technique for evaluating the Asphalt Concrete pavement surface condition; common types o
... Show MoreThis paper was aimed to study the efficiency of forward osmosis (FO) process as a new application for the treatment of wastewater from textile effluent and the factors affecting the performance of forward osmosis process.
The draw solutions used were magnesium chloride (MgCl2), and aluminum sulphate (Al2 ( SO4)3 .18 H2O), and the feed solutions used were reactive red, and disperse blue dyes.
Experimental work were includes operating the forward osmosis process using thin film composite (TFC) membrane as flat sheet for different draw solutions and feed solutions. The operating parameters studied were : draw solutions concentration (10 – 90 g/l), feed solutions concentration (5 – 30 mg/l), draw solutions flow rate (10 – 50 l/hr
Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MorePathology reports are necessary for specialists to make an appropriate diagnosis of diseases in general and blood diseases in particular. Therefore, specialists check blood cells and other blood details. Thus, to diagnose a disease, specialists must analyze the factors of the patient’s blood and medical history. Generally, doctors have tended to use intelligent agents to help them with CBC analysis. However, these agents need analytical tools to extract the parameters (CBC parameters) employed in the prediction of the development of life-threatening bacteremia and offer prognostic data. Therefore, this paper proposes an enhancement to the Rabin–Karp algorithm and then mixes it with the fuzzy ratio to make this algorithm suitable
... Show MoreThe compound Fe0.5CoxMg0.95-xO where (x= 0.025, 0.05, 0.075, 0.1) was prepared via the sol-gel technique. The crystalline nature of magnesium oxide was studied by X-ray powder diffraction (XRD) analysis, and the size of the sample crystals, ranging between (16.91-19.62nm), increased, while the lattice constant within the band (0.5337-0.4738 nm) decreased with increasing the cobalt concentration. The morphology of the specimens was studied by scanning electron microscopy (SEM) which shows images forming spherical granules in addition to the presence of interconnected chips. The presence of the elements involved in the super