The objective of the present study is to verify the actual carious lesion depth by laser
fluorescence technique using 650 nm CW diode laser in comparison with the histopathological
investigation. Five permanent molar teeth were extracted from adult individuals for different reasons
(tooth impaction, periodontal diseases, and pulp infections); their ages were ranging from 20-25 years
old. Different carious teeth with varying clinical stages of caries progression were examined. An
experimental laser fluorescence set-up was built to perform the work regarding in vitro detection and
quantification of occlusal dental caries and the determination of its actual clinical carious lesion depth by
650 nm CW diode laser (excitation wavelength (λexcit.) = 669 nm). Five teeth were sent to
histopathological examination to confirm the efficacy of laser fluorescence technique for the
determination of actual carious lesion depth. The results are leading to the detection of carious lesions for
different depths. The deepest carious lesions revealed high fluorescence intensity. Based on these
findings; it was concluded that 650 nm CW diode laser (λexcit. = 669 nm 40 mW) is a suitable and a
reliable tool for caries diagnosis and depth assessment. Histopathological findings for the estimation of
actual carious lesion depth revealed a good correlation with that of laser fluorescence technique.
Credit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them. This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, c
... Show MorePlagiarism is described as using someone else's ideas or work without their permission. Using lexical and semantic text similarity notions, this paper presents a plagiarism detection system for examining suspicious texts against available sources on the Web. The user can upload suspicious files in pdf or docx formats. The system will search three popular search engines for the source text (Google, Bing, and Yahoo) and try to identify the top five results for each search engine on the first retrieved page. The corpus is made up of the downloaded files and scraped web page text of the search engines' results. The corpus text and suspicious documents will then be encoded as vectors. For lexical plagiarism detection, the system will
... Show MoreImage pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The
... Show MoreForeground object detection is one of the major important tasks in the field of computer vision which attempt to discover important objects in still image or image sequences or locate related targets from the scene. Foreground objects detection is very important for several approaches like object recognition, surveillance, image annotation, and image retrieval, etc. In this work, a proposed method has been presented for detection and separation foreground object from image or video in both of moving and stable targets. Comparisons with general foreground detectors such as background subtraction techniques our approach are able to detect important target for case the target is moving or not and can separate foreground object with high det
... Show MoreImage pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM
... Show More