The frequent and widespread use of medicines and personal care products, particularly in the residential environment, tends to raise concerns about environmental and human health impacts. On the other hand, carbon dioxide accumulation in the atmosphere is a problem with numerous environmental consequences. Microalgae are being used to bioremediate toxins and capture CO2. The current study aimed to confirm the possibility of removing pharmaceutical contaminant (Ranitidine) at different concentrations by using the Chlorella Sorokiniana MH923013 microalgae strain during the growth time. As part of the experiment, carbon dioxide was added to the culture medium three times per week. Explanatory results revealed that gas doses directly affect microalgae growth and removal efficiency, as evidenced by faster and more productive cell adaptation compared to control cultures. The development profile of microalgae is significantly influenced by pure carbon dioxide bubbles. When compared to control flasks, carbon dioxide increased the specific growth rate and doubling time. During the 312 hours microalgae cultivation period, the Chlorella strain recorded the highest pollutant removal efficiency (58%), particularly at the pollutant concentration of 5 mg/l CO2.
Cadmium is one of the heavy metal found in the wastewater of many industries. The electrocoagulation offers many advantages for the removal of cadmium over other methods. So the removal of cadmium from wastewater by using electrocoagulation was studied to investigate the effect of operating parameters on the removal efficiency. The studied parameters were the initial pH, initial concentration, and applied voltage. The study experiments were conducted in a batch reactor with with two pairs of aluminum electrodes with dimension and 2mm in thick with 1.5 cm space between them. The optimum removal was obtained at pH =7, initial concentration = 50 mg/L, and applied voltage = 20 V and it was 90%.
Applications of microalgae in environmental studies have recently increased. Current uses of immobilized microalga Chlorella vulgaris include reducing pharmaceutical substances such as amoxicillin AMX and potassium dichromate K2Cr2O7 on freshwater clam Pseudodontopsis euphraticus as a biotic model. Recent research pointed out a change in biomarkers of oxidative stress in an evaluation of induced toxicity. Where clams were exposed to different concentrations100, 200, and 400 mg/L for 7 days and 20, 30, and 50 mg/L for 5 days of amoxicillin and potassium dichromate, respectively. The results showed that exposure to AMX and K2Cr2O7 led to a signific
... Show MoreAdsorption techniques are widely used to remove certain classes of pollutants from wastewater. Phenolic compounds represent one of the problematic groups. Na-Y zeolite has been synthesized from locally available Iraqi kaolin clay. Characterization of the prepared zeolite was made by XRD and surface area measurement using N2 adsorption. Both synthetic Na-Y zeolite and kaolin clay have been tested for adsorption of 4-Nitro-phenol in batch mode experiments. Maximum removal efficiencies of 90% and 80% were obtained using the prepared zeolite and kaolin clay, respectively. Kinetics and equilibrium adsorption isotherms were investigated. Investigations showed that both Langmuir and Freundlich isotherms fit the experimental data quite well. On the
... Show MoreThis paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.
This study aims to remove Cd(II) ions from simulated wastewater by using Chlorophyceae algae (CA). Different parameters were studied to show their effects on the biosorption efficiency of CA. These parameters are: the effect of pH 3-7, initial metal ion concentration 20-200 mg/L, sorbent dos-age 0.05-2 g/L, contact time 5-180 min, and agitation speed 100-300 rpm. We found that both the Langmuir and Freundlich models appropriate for characterizing the metal removal process. The biosorption data fit best with the results of the pseudo-second-order kinetic model, demonstrating that the chemisorption process is the dominant mechanism controlling the removal. CA was char-acterized using the scanning electron microscopy test, prior to and post bi
... Show MoreThe use of biopolymer material Chitosan impregnated granular activated carbon CHGAC as adsorbent in the removal of lead ions pb.2+ from aqueous solution was studied using batch adsorption mode. The prepared CHGAC was characterized by Scanning Electronic Microscopy (SEM) and atomic-absorption pectrophotometer. The adsorption of lead ions onto Chitosan-impregnated granular activated carbon was examined as a function of adsorbent weight, pH and
contact time in Batch system. Langmuir and Freundlich models were employed to analyze the resulting experimental data demonstrated that better fitted by Langmuir isotherm model than Freundlich model, with good correlation coefficient. The maximum adsorption capacity calculated f
In the present study, a low cost adsorbent is developed from the naturally available sawdust
which is biodegradable. The removal capacity of chromium(VI) from the synthetically prepared
industrial effluent of electroplating and tannery industrial is obtained.
Two modes of operation are used, batch mode and fixed bed mode. In batch experiment the
effect of Sawdust dose (4- 24g/L) with constant initial chromium(VI) concentration of 50 mg/L and
constant particle size less than1.8 mm were studied.
Batch kinetics experiments showed that the adsorption rate of chromium(VI) ion by Sawdust
was rapid and reached equilibrium within 120 min. The three models (Freundlich, Langmuir and
Freundlich-Langmuir) were fitted to exper
The present study aims to remove nickel ions from solution of the simulated wastewater using (Laminaria saccharina) algae as a biosorbent material. Effects of experimental parameters such as temperature at (20 - 40) C⁰, pH at (3 - 7) at time (10 - 120) min on the removal efficiency were studied.
Box-Wilson method was adopted to obtain a relationship between the above three experimental parameters and removal percentage of the nickel ions. The experimental data were fitted to second order polynomial model, and the optimum conditions for the removal process of nickel ions were obtained.
The highest removal percentage of nickel ions obtained was 98.8 %, at best operating conditions (Temperature 35 C⁰, pH 5 and Time 10 min).
The removal of chlorpyrifos pesticide from aqueous solutions was achieved by adsorption using low cost agricultural residue as adsorbent surface; barley husks. Several variables that affect the adsorption were studied including contact time, adsorbent weight, pH, ionic strength, particle size and temperature. The absorbance of the solution before and after adsorption was measured by using UV-Visible spectrophotometer. The equilibrium data was suitable with Langmuir model of adsorption and the linear regression coefficient R2 = 0.9785 at 37.5°C was used to knowledge the best fitting isotherm model. The general shape of the adsorption isotherm of chlorpyrifos on barley husks consistent with (H3-type) on the Giles classification. Several
... Show More