Preferred Language
Articles
/
ijcpe-372
Removal of Lead, Cadmium, and Mercury Ions Using Biosorption
...Show More Authors

The biosorption of Pb (II), Cd (II), and Hg (II) from simulated aqueous solutions using baker’s yeast biomass was investigated. Batch type experiments were carried out to find the equilibrium isotherm data for each component (single, binary, and ternary), and the adsorption rate constants. Kinetics pseudo-first and second order rate models applied to the adsorption data to estimate the rate constant for each solute, the results showed that the Cd (II), Pb (II), and Hg (II) uptake process followed the pseudo-second order rate model with (R2) 0.963, 0.979, and 0.960 respectively. The equilibrium isotherm data were fitted with five theoretical models. Langmuir model provides the best fitting for the experimental results with (R2) 0.992, 0.9987, and 0.9995 for Cd (II), Pb (II), and Hg (II) respectively. The effect of various influent adsorbates concentrations, and flow rates on the performance of fixed bed adsorber was found for the three heavy metals.
A mathematical model was formulated to describe the breakthrough curves in the fixed bed adsorber for each component. The results show that the mathematical model provides a good description of the adsorption process for Cd (II), Pb (II), and Hg (II) onto fixed bed of baker’s yeast biomass.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 01 2010
Journal Name
Desalination And Water Treatment
Removal of lead, cadmium, and mercury ions using biosorption
...Show More Authors

View Publication
Scopus (32)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Biosorption of Lead, Cadmium and Nickle from Industrial Wast water by Using Dried Macroalgae
...Show More Authors

Biosorpion of lead (Pb), Cadmium (Cd) and Nickl(Ni) by dried biomass of Chara sp. for sample of BMP was used as alternative approach of conventional method. The range of removal percentages was between 92-97%, 70-98.7% and 46.6-96.6% for Pb, Cd and Ni respectively at 3h.Treatment time, with 300-500 mg dried weight from Chara sp. powder at pH 4, with 60 rpm at shaker. FTIR analysis showed the active groups which are responsible for sequestration of heavy metals represented by carboxyl, hydroxyl alkyl, amine and amide. The Biosorption equilibrium experiment for elements showed that the highest sorption percentage for three elements was, Pb 96.6% after 30 minute, for Cd was 100% after 15 minute and 40% to Ni after 75 minute, while the biosorp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Biosorption of Lead and Chromium Ions by Using Penicillium digitatum (Pers.) Sacc. from Industrial Water
...Show More Authors

Some microorganisms, including fungi, are characterized by their removal efficiency and reducing the concentrations of heavy metals such as Pb and Cr from industrial water. The present study aims to estimate the efficiency of Penicillium digitatum (Pers.) Sacc. as a low-cost biosorbent in reducing Pb and Cr from industrial water with optimum biosorption conditions (acidity of 1.5 , 4, and 5; temperature of 30 °C). The Fourier transform infrared spectroscopy (FTIR) analysis was also used for determining the roles of the functional groups in this biosorbent. The results indicated that the highest P. digitatum efficiency values for reducing the levels of Pb and Cr were 84% and 70% , respectively, at pH of 5 after 24 h.

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Removal of Cadmium Ions from Simulated Wastewater Using Rice Husk Biosorbent
...Show More Authors

Biosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.

View Publication Preview PDF
Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Biosorption of Lead, Cadmium, and Zinc onto Sunflower Shell: Equilibrium, Kinetic, and Thermodynamic Studies
...Show More Authors

The present study deals with the application of an a bundant low cost biosorbent sunflower shell for metal ions removal. Lead, Cadmium and Zinc were chosen as model sorbates. The influences of initial pH, sorbent dosage, contact time, temperature and initial metal ions concentration on the removal efficiency were examined. The single ion equilibrium sorption data were fitted to the non-competitive Langmuir and Freundlich isotherm models. The Freundlich model represents the equilibrium data better than the Langmuir model. In single, binary and ternary component systems,Pb+2 ions was the most favorable component rather than Cd+2 and Zn+2 ions. The biosorption kinetics for the three metal ions followed the p

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
REMOVAL of HEAVY METALS IONS from AQUEOUS SOLUTIONS USING BIOSORPTION onto BAMBOO
...Show More Authors

Feasibility of biosorbent of England bamboo plant origin was tested for removal of priority metal ions such as Cu and Zn from aqueous solutions in single metal state. Batch single metal state experiments were performed to determine the effect of dosage (0.5, 1 and 1.5 g), pH (3, 4, 4.5, 5 and 6), mixing speed (90, 111, 131, 156 and 170 rpm), temperature (20, 25, 30 and 35 °C) and metal ion concentration (10, 50, 70, 90 and 100 mg/L) on the ability of dried biomass to remove metal from solutions which were investigated. Dried powder of bamboo removed (for single metal state) about 74 % Cu and 69% Zn and maximum uptake of Cu and Zn was 7.39 mg/g and 6.96 mg/g respectively, from 100 mg/L of synthetic metal solution in 120 min. of contact t

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Cadmium Ions from Wastewater by Batch Experiments
...Show More Authors

Adsorption experiments were carried out using two different low-cost sorbent materials, date seeds and olive seeds. These sorbents used as a single phase (not as mixture) to remove cadmium ions from simulated wastewater by adsorption process. The equilibrium time was found at 2 hr. The experiments include different parameters such sorbent type and weight and contact time. It was found that both of olive seed and date seed have approximately the same adsorption capacity (qm) with 15.644 mg/g and 15.2112 mg/g, respectively. Equilibrium isotherms and kinetic studies have been carried out. Langmuir isotherm model better fits the experimental data compared with the Freundlich isotherm for olive seed, while Freundlich isotherm fits for date se

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 13 2022
Journal Name
Iraqi Journal Of Science
The adsorption of Cadmium and Lead Ions from aqueous solutions using non living biomass of Phragmites australis
...Show More Authors

Adsorption is a simplified new way, easy application , economical and environmentally friendly. In which the use of certain types of plants to remove or reduce toxic heavy metals from water. The current study involved the use of a non-living biomass as a powder for local plant available in the Iraqi environment is Phragmites australis .This the study showed the high ability of this plant to remove cadmium and lead ions from the aqueous solutions within variable experimental factors by column bed method which were used to test different sizes of plant powder were (500.1000, 1500 and 2000) μm . These sizes treated with initial concentration of Cd(II), Pb(II) was 25ppm , separately To test the optimum size for maximum adsorption and was 10

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Lead Ions from Wastewater by using a Local Adsorbent from Charring Tea Wastes
...Show More Authors

   Adsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three mo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Al-Khriet Agricultural Waste Adsorbent, for Removal Lead and Cadmium Ion from Aqueous Solutions
...Show More Authors

The availability of low- cost adsorbent namely Al-Khriet ( a substance found in the legs of Typha  Domingensis) as an agricultural waste material, for the removal of lead and cadmium from aqueous solution was investigated. In the batch tests experimental parameters were studied, including adsorbent dosage between (0.2-1) g, initial metal ions concentration between (50-200) ppm (single and binary) and contact time (1/2-6) h. The removal percentage of each ion onto Al-Khriet reached equilibrium in about 4 hours. The highest adsorption capacity was for lead (96%) while for cadmium it was (90%) with 50 ppm ions concentration, 1 g dosage of adsorbent and pH 5.5. Adsorption capacity in the binary mixture were reduce at about 8% for lead a

... Show More
View Publication Preview PDF