Prediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressure gradient and clay volume, which were also established first, data such as gamma ray, density, resistivity, and sonic log data are also required. A key consideration in the design of certain wells is the forecasting of fracture pressure for wells drilled in the southern Iraqi oilfield of Buzurgan. The pressure abnormality is found in MA, MB21, MC1 and MC2 units by depending on pore pressures calculated from resistivity log. In these units, depths and its equivalent normal and abnormal pressure are detected for all sex selected wells; BUCS-47, BUCS-48, BUCS-49, BUCN-43, BUCN-51 and BBCN-52. For MA, MB21, MC1, and MC2 units, the highest difference in pore pressure values are 1698 psi @ 3750 m (BUCN-51), 3420 psi @ 3900 m (BUCN-51), 788 psi @ 3980 m (BUCS-49), and 5705 psi @ 4020 m (BUCN-52). On other hands, MB11 and MB12 units have normal pressure trend in all studied wells. Finally, the results show that the highest pore and fracture pressure values is existed in North dome, in comparison with that obtained in south dome of Mishrif reservoir at Buzurgan oilfield.
User confidentiality protection is concerning a topic in control and monitoring spaces. In image, user's faces security in concerning with compound information, abused situations, participation on global transmission media and real-world experiences are extremely significant. For minifying the counting needs for vast size of image info and for minifying the size of time needful for the image to be address computationally. consequently, partial encryption user-face is picked. This study focuses on a large technique that is designed to encrypt the user's face slightly. Primarily, dlib is utilizing for user-face detection. Susan is one of the top edge detectors with valuable localization characteristics marked edges, is used to extract
... Show MoreIn this paper, tunable optical band-pass filters based on Polarization Maintaining Fiber –Mach Zehnder Interferometer presented. Tunability of the band-pass filter implemented by applying different mechanical forces N on the micro-cavities splicing regions (MCSRs). The micro-cavity formed by using three variable-lengths of single-mode polarization-maintaining fiber with (8, 16, 24) cm lengths, splice between two segments of (SMF-28) with (26, 13) cm lengths, using the fusion splicing technique. Ellipsoidal shape micro-cavities experimentally achieved parallel to the propagation axis having dimensions between (12-24) μm of width and (4-12) μm of length. A micro-cavity with width and length as high as 24 μm and 12 μ
... Show MoreIn order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf
... Show MoreLED is an ultra-lightweight block cipher that is mainly used in devices with limited resources. Currently, the software and hardware structure of this cipher utilize a complex logic operation to generate a sequence of random numbers called round constant and this causes the algorithm to slow down and record low throughput. To improve the speed and throughput of the original algorithm, the Fast Lightweight Encryption Device (FLED) has been proposed in this paper. The key size of the currently existing LED algorithm is in 64-bit & 128-bit but this article focused mainly on the 64-bit key (block size=64-bit). In the proposed FLED design, complex operations have been replaced by LFSR left feedback technology to make the algorithm perform more e
... Show MoreIn this work the effect of choosing tri-circular tube section had been addressed to minimize the end effector’s error, a comparison had been made between the tri-tube section and the traditional square cross section for a robot arm, the study shows that for the same weight of square section and tri-tube section the error may be reduced by about 33%.
A program had been built up by the use of MathCAD software to calculate the minimum weight of a square section robot arm that could with stand a given pay load and gives a minimum deflection. The second part of the program makes an optimization process for the dimension of the cross section and gives the dimensions of the tri-circular tube cross section that have the same weight of
... Show MoreThe advancement of cement alternatives in the construction materials industry is fundamental to sustainable development. Geopolymer is the optimal substitute for ordinary Portland cement, which produces 80% less CO2 emissions than ordinary Portland cement. Metakaolin was used as one of the raw materials in the geopolymerization process. This research examines the influence of three different percentages of sulfate (0.00038, 1.532, and 16.24) % in sand per molarity of NaOH on the compressive strength of metakaolin-based geopolymer mortar (MK-GPM). Samples were prepared with two different molarities (8M and 12M) and cured at room temperature. The best compressive strength value (56.98MPa) was recorded with 12M w
... Show MorePortland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize
... Show MoreIn this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (
In this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the str
... Show More