LED is an ultra-lightweight block cipher that is mainly used in devices with limited resources. Currently, the software and hardware structure of this cipher utilize a complex logic operation to generate a sequence of random numbers called round constant and this causes the algorithm to slow down and record low throughput. To improve the speed and throughput of the original algorithm, the Fast Lightweight Encryption Device (FLED) has been proposed in this paper. The key size of the currently existing LED algorithm is in 64-bit & 128-bit but this article focused mainly on the 64-bit key (block size=64-bit). In the proposed FLED design, complex operations have been replaced by LFSR left feedback technology to make the algorithm perform more efficiently and productively. The results of the cipher/decipher analysis, 15 NIST test, comparison between proposal FLED and original LED based on the results of correlation coefficient (CC)and Cosine Similarity (CS), execution time, and throughputs showed that the proposed FLED has faster cipher and more productive than the original LED; it is also more secure than the original LED.
Social media and networks rely heavily on images. Those images should be distributed in a private manner. Image encryption is therefore one of the most crucial components of cyber security. In the present study, an effective image encryption technique is developed that combines the Rabbit Algorithm, a simple algorithm, with the Attractor of Aizawa, a chaotic map. The lightweight encryption algorithm (Rabbit Algorithm), which is a 3D dynamic system, is made more secure by the Attractor of Aizawa. The process separates color images into blocks by first dividing them into bands of red, green, and blue (RGB). The presented approach generates multiple keys, or sequences, based on the initial parameters and conditions, which are
... Show MoreCryptography can be thought of as a toolbox, where potential attackers gain access to various computing resources and technologies to try to compute key values. In modern cryptography, the strength of the encryption algorithm is only determined by the size of the key. Therefore, our goal is to create a strong key value that has a minimum bit length that will be useful in light encryption. Using elliptic curve cryptography (ECC) with Rubik's cube and image density, the image colors are combined and distorted, and by using the Chaotic Logistics Map and Image Density with a secret key, the Rubik's cubes for the image are encrypted, obtaining a secure image against attacks. ECC itself is a powerful algorithm that generates a pair of p
... Show MoreAs s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res
... Show MoreCommunication is one of the vast and rapidly growing fields of engineering, where
increasing the efficiency of communication by overcoming the external
electromagnetic sources and noise is considered a challenging task. To achieve
confidentiality for color image transmission over the noisy communication channels
a proposed algorithm is presented for image encryption using AES algorithm. This
algorithm combined with error detections using Cyclic Redundancy Check (CRC) to
preserve the integrity of the encrypted data. This paper presents an error detection
method uses Cyclic Redundancy Check (CRC), the CRC value can be generated by
two methods: Serial and Parallel CRC Implementation. The proposed algorithm for
the
In this paper, a method for data encryption was proposed using two secret keys, where the first one is a matrix of XOR's and NOT's gates (XN key), whereas the second key is a binary matrix (KEYB) key. XN and KEYB are (m*n) matrices where m is equal to n. Furthermore this paper proposed a strategy to generate secret keys (KEYBs) using the concept of the LFSR method (Linear Feedback Shift Registers) depending on a secret start point (third secret key s-key). The proposed method will be named as X.K.N. (X.K.N) is a type of symmetric encryption and it will deal with the data as a set of blocks in its preprocessing and then encrypt the binary data in a case of stream cipher.
Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.
This work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show More