The Fauqi field is located about 50Km North-East Amara town in Missan providence in Iraq. Fauqi field has 1,640 MMbbl STOIIP, which lies partly in Iran. Oil is produced from both Mishrif and Asmari zones. Geologically, the Fauqi anticline straddles the Iraqi/Iranian border and is most probably segmented by several faults. There are several reasons leading to drilling horizontal wells rather than vertical wells. The most important parameter is increasing oil recovery, particularly from thin or tight reservoir permeability. The Fauqi oil field is regarded as a giant field with approximately more than 1 billion barrels of proven reserves, but it has recently experienced low production rate problems in many of its existing wells. This study will concentrate on analyzing the Asmari reservoir as the main production reservoir in this field for an oil gravity of 18 API. While, well (FQ-8) has been selected as a pilot well to verify different development scenarios that could be taken to increase the reservoir production rate. The results show that both drilling lateral sections and performing the stimulation process in some reservoir intervals yield positive results to increase good productivity with different percentages. The lateral sections occasionally gave higher productivity than the stimulation process by (2-3) times.
Electrical distribution system loads are permanently not fixed and alter in value and nature with time. Therefore, accurate consumer load data and models are required for performing system planning, system operation, and analysis studies. Moreover, realistic consumer load data are vital for load management, services, and billing purposes. In this work, a realistic aggregate electric load model is developed and proposed for a sample operative substation in Baghdad distribution network. The model involves aggregation of hundreds of thousands of individual components devices such as motors, appliances, and lighting fixtures. Sana’a substation in Al-kadhimiya area supplies mainly residential grade loads. Measurement-based
... Show MoreRecovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.
A Pap test can identify the pre-cancerous and cancerous problem in the vagina and uterine cervix. Cervical tumour is the easiest gynecologic disease to be diagnosed, treated and prevented using regular screening tests and follow-up. This review aimed to explore the opinion of specialists about cytological changes and the precancerous lesions with Pap smear test and visual inspection of the cervices, also to determine the relationship of this malignancy with demographic characteristics of patients. Results showed that few cervical cancer and pre-cancer were with women in postmenopausal period, but more were with women in the premenopausal period. Visual inspection of the cervix can show erosion lesions by gross inspection. Upon cytology exam
... Show MoreData-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.
Several attempts have been made to modify the quasi-Newton condition in order to obtain rapid convergence with complete properties (symmetric and positive definite) of the inverse of Hessian matrix (second derivative of the objective function). There are many unconstrained optimization methods that do not generate positive definiteness of the inverse of Hessian matrix. One of those methods is the symmetric rank 1( H-version) update (SR1 update), where this update satisfies the quasi-Newton condition and the symmetric property of inverse of Hessian matrix, but does not preserve the positive definite property of the inverse of Hessian matrix where the initial inverse of Hessian matrix is positive definiteness. The positive definite prope
... Show MoreCarrying strength is one of the important physical capabilities in the field of competitive sports, which affects the success of the sports training process and helps players to continue to perform skillfully, physically and tactically for as long as possible, and the capacity for endurance varies depending on the type of sports activities, it may sometimes be very short. And with a high level of intensity, such as gymnastics and wrestling movements, and it may be long, and with a medium level of intensity, as in basketball, football and other games. The research community represents a sample of Baghdad players for teams (football, basketball, handball, volleyball, wrestling, weightlifting) and for the sports season (2017-2018 AD) for ages
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show More