Heavy oil is classified as unconventional oil resource because of its difficulty to recover in its natural state, difficulties in transport and difficulties in marketing it. Upgrading solution to the heavy oil has positive impact technically and economically specially when it will be a competitive with conventional oils from the marketing prospective. Developing Qaiyarah heavy oil field was neglected in the last five decades, the main reason was due to the low quality of the crude oil resulted in the high viscosity and density of the crude oil in the field which was and still a major challenge putting them on the major stream line of production in Iraq. The low quality of the crude properties led to lower oil prices in the global markets as well as the high operation cost of production and transportation. The purpose of this paper is testing new technology applications on an Iraqi Heavy Oil Field and specifically (Qaiyarah Oil Field) by applying the cold cracking technique to upgrade Qaiyarah heavy oil properties through using series of electrical/ mechanical activities applied on the heavy crude that generates special kind of vibrations to re-structure the (H-C) bonds in the heavy oil to convert it to lighter crude with lower viscosity/ density which was the outcome of the distillation by reducing the unsaturated components and isolating the minerals and sulfur as sold components. The results were very optimistic, where the density has improved from 16 to 30.5 API degree, sulfur content has reduced from 6.4 to 1.507 weight percent and selling price per barrel would increase by 53% compare to 2.31% cost increment due to the upgrading operation. Therefore, applying the cold cracking technology is convenience for improving Qaiyarah oil properties as the main production stream line will be increased in Iraq.
Mercury, arsenic, cadmium and lead, were measured in sediment samples of river and marine environmental of Basra governorate in southern of Iraq. Sixteen sites of sediment were selected and distributed along Shatt Al-Arab River and the Iraqi marine environment. The samples were distributed among one station on Euphrates River before its confluence with Tigris River and Shatt Al-Arab formation, seven stations along Shatt Al-Arab River and eight stations were selected from the Iraqi marine region. All samples were collected from surface sediment in low tide time. ICP technique was used for the determination of mercury and arsenic for all samples, while cadmium and lead were measured for the same samples by using Atomic Absorption Spectrosc
... Show MoreThis paper investigated in the numerical simulation model to calculate the Earth magnetic field components at north provinces of Najaf city (Longitude 44.316 o -44.3592o E and Latitude 32.0508o - 32.0256o N). The components of the Earth magnetic field (total intensity (F), horizontal intensity (H), declination (D), inclination (I), the north component(X), the east component(Y), and Down component(Z)) were found by using spherical harmonic world magnetic model (WMM2010). A great deal of anomaly has been discovered in all components of the Earth magnetic field at the selected region (Long. 44.345o-44.335o E, Lat.32.042o-32.032o N) using Kriging method.
... Show MoreAbstract. Al-Abbawy DAH, Al-Thahaibawi BMH, Al-Mayaly IKA, Younis KH. 2021. Assessment of some heavy metals in various aquatic plants of Al-Hawizeh Marsh, southern of Iraq. Biodiversitas 22: 338-345. In order to describe the degree of contamination of aquatic environments in Iraq, heavy metals analysis (Fe, Ni, Cr, Cd, Pb, and Zn) was conducted for six aquatic macrophytes from different locations of Al-Hawizeh Marsh in southern Iraq. The six species were Azolla filiculoides (floating plant), Ceratophyllum demersum, Potamogeton pectinatus, Najas marina (submerged plants), Phragmites australis, and Typha domingensis (emergent plants). The results indicate that cadmium, chromium, and iron concentrations in aquatic plants were above the
... Show MoreThe study aimed to estimate the content of lead and determine the quality of the internal coating of metal cans through electrical conductivity as well as to determine the accuracy of the information card for some types of canned food that available in local markets. The information card test showed that all of these samples contained the name of the food, trade mark, country origin, weight, and components, as was indicated by the company producing in all of them except for the C12 sample which was otherwise, and the batch number was mentioned in all samples except for the C3 and C17 which was not clear and not mentioned in the C21, and the validity period was observed (produce and fini
... Show MoreThe study aimed to : - To determine whether there are significant differences between Fartlek training and the increase in the molecular biology (VEGF - basal fibroblast growth factor) for arena and field players in an (800m) youth event. - Determine whether there are statistically significant differences between Fartlek training and the increase in molecular biology and some physical variables for the players (800m) in the arena and field for youth. - Determine whether the Fartlek training method is the most appropriate to achieve statistically significant differences in the research variables for the players (800m) in the arena and field for youth. The researchers used the experimental method for its suitability and the nature of the rese
... Show MoreIn this study, sawdust as a cheap method and abundant raw material was utilized to produce active carbon (SDAC). Physiochemical activation was utilized where potassium hydroxide used as a chemical activating agent and carbon dioxide was used as a physical activating agent. Taguchi method of experimental design was used to find the optimum conditions of SDAC production. The produced SDAC was characterized using SEM to investigate surface morphology and BET to estimate the specific surface area. SDAC was used in aqueous lead ions adsorption. Adsorption process was modeled statistically and represented by an empirical model. The highest specific surface area of SDAC was 688.3 m2/gm. Langmuir and Freundlich isotherms were used to
... Show MoreIndustrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show MoreThis study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr
... Show MoreThis study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr
... Show More