Many oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different from one well to another, from the high-pressure-temperature reservoir to surface conditions. All these factors must be investigated on a case-by-case basis. Because the Halfaya oil field is still developing its petroleum sector, modelling, and forecasting the phase behavior and asphaltene precipitation is crucial. This work used crude oil bottom hole samples with an API of equal to 27 from a well in the Halfaya oil field/Nahr-Umr formation to create a thermodynamic model using Multiflash software. The data included the compositional analysis, the PVT data, and reservoir conditions. The thermodynamic model of asphaltene phase behavior was proposed using the Cubic-Plus association equation of state. All the screening techniques' results revealed the presence of an asphaltene precipitation issue (asphaltene unstable), which was confirmed by a thermodynamic fluid model. The aim of this paper is to predict the problem of asphaltene precipitation so that future proactive remedial methods can be developed to decrease the time and expense associated with it.
Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show MoreReservoir rock typing integrates geological, petrophysical, seismic, and reservoir data to identify zones with similar storage and flow capacities. Therefore, three different methods to determine the type of reservoir rocks in the Mushrif Formation of the Amara oil field. The first method represents cluster analysis, a statistical method that classifies data points based on effective porosity, clay volume, and sonic transient time from well logs or core samples. The second method is the electrical rock type, which classifies reservoir rocks based on electrical resistivity. The permeability of rock types varies due to differences in pore geometry, mineral composition, and fluid saturation. Resistivity data are usually obtained from w
... Show MoreThe study of surface hardness, wear resistance, adhesion strength, electrochemical corrosion resistance and thermal conductivity of coatings composed from sodium silicate was prepared using graphite micro-size particles and carbon nano particles as fillers respectively of concentration of (1-5%), for the purpose of covering and protecting the oil distillation towers. The results showed that the sodium silicate coating reinforced with carbon nano-powder has higher resistance to stitches, mechanical wear, adhesive and thermal conductivity than graphite/sodium silicate composite especially when the ratio 5% and 1%, the electrochemical corrosion test confirmed that the coating process of stainless steel 304 lead to increasin
... Show MoreEstimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a compar
... Show MoreThe increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreThere are many problems facing the economic entities as a result of its mass production &variation of its products , the matter which had increased the need & importance of cost accounting which is regarded a main tool for the managerial control.
The actual costing system is unable to meet the contemporary management needs ,so the Standard costing system appear to provide the management with required information to perform its functions by the best use& way.
This research aims to determine the standard cost for the direct material for oil extraction activity by applying it in the north oil company.
Predicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods
... Show MoreAcidizing is one of the most used stimulation techniques in the petroleum industry. Several reports have been issued on the difficulties encountered during the stimulation operation of the Ahdeb oil field, particularly in the development of the Mishrif reservoir, including the following: (1) high injection pressures make it difficult to inject acid into the reservoir formation, and (2) only a few acid jobs have been effective in Ahdeb oil wells, while the bulk of the others has been unsuccessful. The significant failure rate of oil well stimulation in this deposit necessitates more investigations. Thus, we carried out this experimental study to systematically investigate the influence of acid treatment on the geomechanical properties of Mi4
... Show More