The electric submersible pump, also known as ESP, is a highly effective artificial lift method widely used in the oil industry due to its ability to deliver higher production rates compared to other artificial lift methods. In principle, ESP is a multistage centrifugal pump that converts kinetic energy into dynamic hydraulic pressure necessary to lift fluids at a higher rate with lower bottomhole pressure, especially in oil wells under certain bottomhole condition fluid, and reservoir characteristics. However, several factors and challenges can complicate the completion and optimum development of ESP deployed wells, which need to be addressed to optimize its performance by maximizing efficiency and minimizing costs and uncertainties. To analyze the performance of ESP deployed wells, the objective function must include various factors associated with fluids, reservoir inflow and outflow characteristics, and pump parameters. In particular, the inflow and outflow parameters include well configuration, and types of completion string (e.g. tubing sizes, and download completion hardware) while reservoir and fluid parameters include pressure, temperature, and PVT properties. Pump parameters include gas vacuum fraction, electrical and mechanical constraints, power requirements, cable requirements, downhole conditions, etc. Despite these challenges, ESPs' importance and efficiency necessitate an in-depth understanding of its origins and evolution over time, as well as the difficulties encountered in the oil industry. This paper aims to provide a comprehensive review of ESP's origin and development, including all prior studies that have influenced optimum development. The literature review is divided into four main sections: experimental investigations, numerical simulation studies, mechanical modeling, and in-depth studies on production optimization. By providing an in-depth analysis of previous work in each area, this paper aims to contribute to ongoing efforts to enhance ESPs' performance and efficiency in the oil industry.
Nowadays, the use of natural bio-products in pharmaceuticals is gaining popularity as safe alternatives to chemicals and synthetic drugs. Algal products are offering a pure, healthy and sustainable choice for pharmaceutical applications. Algae are photosynthetic microorganisms that can survive in different environmental conditions. Algae have many outstanding properties that make them excellent candidate for use in therapeutics. Algae grow in fresh and marine waters and produce in their cells a wide range of biologically active chemical compounds. These bioactive compounds are offering a great source of highly economic bio-products. The prese
... Show More
Solvents are important components in the pharmaceutical and chemical industries, and they are increasingly being used in catalytic reactions. Solvents have a significant influence on the kinetics and thermodynamics of reactions, and they can significantly change product selectivity. Solvents can influence product selectivity, conversion rates, and reaction rates. However, solvents have received a lot of attention in the field of green chemistry. This is due to the large amount of solvent that is frequently used in a process or formulation, particularly during the purification steps. However, neither the solvent nor the active ingredient in a formulation is directly responsible for the reaction product's composition. Because these ch
... Show MoreThe aim of this study is to shed light on the importance of biofuels as an alternative to conventional energy, in addition to the importance of preserving agricultural crops, which are the main source of this fuel, to maintain food security, especially in developing countries. The increase in global oil prices, in addition to the fear of global warming, are among the main factors that draw the world’s attention to searching for alternative sources of traditional energy, which are sustainable on the one hand, and on the other hand reduce carbon emissions. Therefore, the volume of global investment in renewable energy in general, and in liquid biofuels and biomass in particular, has increased. Global fears emerged that the excessive
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreThe unpredictable and huge data generation nowadays by smart computing devices like (Sensors, Actuators, Wi-Fi routers), to handle and maintain their computational processing power in real time environment by centralized cloud platform is difficult because of its limitations, issues and challenges, to overcome these, Cisco introduced the Fog computing paradigm as an alternative for cloud-based computing. This recent IT trend is taking the computing experience to the next level. It is an extended and advantageous extension of the centralized cloud computing technology. In this article, we tried to highlight the various issues that currently cloud computing is facing. Here
... Show MoreThe advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show MoreIn this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.