The electric submersible pump, also known as ESP, is a highly effective artificial lift method widely used in the oil industry due to its ability to deliver higher production rates compared to other artificial lift methods. In principle, ESP is a multistage centrifugal pump that converts kinetic energy into dynamic hydraulic pressure necessary to lift fluids at a higher rate with lower bottomhole pressure, especially in oil wells under certain bottomhole condition fluid, and reservoir characteristics. However, several factors and challenges can complicate the completion and optimum development of ESP deployed wells, which need to be addressed to optimize its performance by maximizing efficiency and minimizing costs and uncertainties. To analyze the performance of ESP deployed wells, the objective function must include various factors associated with fluids, reservoir inflow and outflow characteristics, and pump parameters. In particular, the inflow and outflow parameters include well configuration, and types of completion string (e.g. tubing sizes, and download completion hardware) while reservoir and fluid parameters include pressure, temperature, and PVT properties. Pump parameters include gas vacuum fraction, electrical and mechanical constraints, power requirements, cable requirements, downhole conditions, etc. Despite these challenges, ESPs' importance and efficiency necessitate an in-depth understanding of its origins and evolution over time, as well as the difficulties encountered in the oil industry. This paper aims to provide a comprehensive review of ESP's origin and development, including all prior studies that have influenced optimum development. The literature review is divided into four main sections: experimental investigations, numerical simulation studies, mechanical modeling, and in-depth studies on production optimization. By providing an in-depth analysis of previous work in each area, this paper aims to contribute to ongoing efforts to enhance ESPs' performance and efficiency in the oil industry.
To identify the fungi associated with water hyacinth (Eichhornia crassipes [Mart.] Solms), an aquatic weed, which presents in Tigris river from Baghdad south ward. Five regions from middle and south of Iraq (Al-Noumanya, Saeid Bin-Jubier, Al-Azizia, Al-Reyfay and Al-Hay) were selected for this study. Twelve fungal species were isolated. Alternaria alternata, Acremonium sp and Cladsporium herbarum, were the most frequently species (91.66 % ,50 % and 25 %) respectively. The fungi Alternaria alternata, Acremonium sp. and Phoma eupyrena were more aggressive to water hyacinth as (91.66%,83,33%, and 75%) in pathogenicity test.
Iridoid glycosides are a group of naturally occurring chemical compounds. They are a large family of compounds biosynthesized by plants, they often have pharmacological effects. The aim of this study is to isolate and identified iridoid glycoside in a newly studied, cultivated in Iraq named Gardenis jasminoides. The medicinal importance of iridoid glycoside, on one hand and absence of phytochemical investigation on leaves of Gardenia on the other hand, acquired this study its importance. Many compounds were isolated from leaves plant part one of these compounds was identified by different chemical analysis like: melting point (MP), thin layer chromatography (TLC), Fourier transforms infrared spectra (FTIR) and high performance l
... Show MoreNew nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us
... Show MoreThe effect of using different R -molar ratio under variable reaction conditions (acidic as well as basic environment and reaction temperature) have been studied. The overall experiments are driven with open and closed systems. The study shows that there is an optimum value for a minimum gelling time at R equal 2. The gelling time for all studied open system found to be shorter than in closed system. In acidic environment and when R value increased from 2 to 10, the gelling time of closed systems has increased four times than open systems at T=30 ?C and fourteen times when temperature reaction increased to 60 ?C. While in basic environment the influence of increasing R value was limited.
Background: Mitral regurgitation (MR) is the most commonly encountered valve lesion in modern clinical practice. Severe mitral regurgitation may cause systolic dysfunction. Left ventricular ejection fraction may not be an accurate measurement of LV function in patients with mitral insufficiency. Myocardial performance index (MPI) is a simple non invasive measure of myocardial function. Methods: The study involved 50 patients with valvular mitral regurgitation and 50 healthy subjects as a control group. Transthoracic echocardiography was carried out for all patients and control group. The echocardiographic measurements included left ventricular end diastolic and end systolic dimensions, left atrial diameter, ejection fraction (EF), and myoca
... Show MoreThe annealing temperature (200–500 °C) effects of optical frequency response on the dielectric functions of sol–gel derived CuCoO
Waveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis a
The physical and elastic characteristics of rocks determine rock strengths in general. Rock strength is frequently assessed using porosity well logs such as neutron and sonic logs. The essential criteria for estimating rock mechanic parameters in petroleum engineering research are uniaxial compressive strength and elastic modulus. Indirect estimation using well-log data is necessary to measure these variables. This study attempts to create a single regression model that can accurately forecast rock mechanic characteristics for the Harth Carbonate Formation in the Fauqi oil field. According to the findings of this study, petrophysical parameters are reliable indexes for determining rock mechanical properties having good performance p
... Show MoreThe behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems' variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.
Concrete structures are exposed to aggressive environmental conditions that lead to corrosion of the embedded reinforcement and pre-stressing steel. Consequently, the safety of concrete structures may be compromised, and this requires a significant budgets to repair and maintain critical infrastructure. Prediction of structural safety can lead to significant reductions in maintenance costs by maximizing the impact of investments. The aim of this paper is to establish a framework to assess the reliability of existing post-tensioned concrete bridges. A time-dependent reliability analysis of an existing post-tensioned involving the assessment of Ynys-y-Gwas bridge has been presented in this study. The main cause of failure of this bridge was c
... Show More