Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data that was adopted by the ANN study was used here where it is comprised of 1922 measured points of SSW and the other nine parameters of Gamma Ray, Compressional Sonic, Caliper, Neutron Log, Density Log, Deep Resistivity, Azimuth Angle, Inclination Angle, and True Vertical Depth from one Iraqi directional well. Three existing empirical correlations are based only on Compressional Sonic Wave Time (CSW) for predicting SSW. In the same way of developing previous correlations, a fourth empirical correlation was developed by using all measured data points of SSW and CSW. A comparison demonstrated that utilizing ANN was better for SSW predicting with a higher R2 equal to 0.966 and lower other statistical coefficients than utilizing four empirical correlations, where correlations of Carroll, Freund, Brocher, and developed fourth had R2 equal to 0.7826, 0.7636, 0.6764, and 0.8016, respectively, with other statistical parameters that show the new developed correlation best than the other three existing. The use of ANN or new developed correlation in future SSW calculations is relevant to decision makers due to a number of limitations and target SSW accuracy.
The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
Scientific development has occupied a prominent place in the field of diagnosis, far from traditional procedures. Scientific progress and the development of cities have imposed diseases that have spread due to this development, perhaps the most prominent of which is diabetes for accurate diagnosis without examining blood samples and using image analysis by comparing two images of the affected person for no less than a period. Less than ten years ago they used artificial intelligence programs to analyze and prove the validity of this study by collecting samples of infected people and healthy people using one of the Python program libraries, which is (Open-CV) specialized in measuring changes to the human face, through which we can infer the
... Show MoreThis paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics
... Show MoreThe survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as
... Show MoreRandom throwing of industrial waste has a significant impact on the environment unless it takes into account the conditions of engineered destroying and/or re-used. Taking the advantage of re-using waste materials in engineering projects represents a well-planned project in order to resolve a lot of engineering problems for some difficult soils. The objective of this study was to evaluate the capability and effects of Rubber Shreds (RS) from scrap torn belts towards improving the shear strength of soft clay. A direct shear tests were conducted on soft clay-RS mixture. The following parameters were investigated to study the influence of RS content, water content, normal stress, and dilation ratio. From experimental test results it was fou
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
This paper compare the accurecy of HF propagation prediction programs for HF circuits links between Iraq and different points world wide during August 2018 when solar cycle 24 (start 2009 end 2020) is at minimun activity and also find out the best communication mode used. The prediction programs like Voice of America Coverage Analysis Program (VOACAP) and ITU Recommendation RS 533 (REC533 ) had been used to generat HF circuit link parameters like Maximum Usable Frequency ( MUF) and Frequency of Transsmision (FOT) .Depending on the predicted parameters (data) , real radio contacts had been done using a radio transceiver from Icom model IC 7100 with 100W RF
... Show More