Preferred Language
Articles
/
ijcpe-916
Comparison of Estimation Sonic Shear Wave Time Using Empirical Correlations and Artificial Neural Network
...Show More Authors

Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data that was adopted by the ANN study was used here where it is comprised of 1922 measured points of SSW and the other nine parameters of Gamma Ray, Compressional Sonic, Caliper, Neutron Log, Density Log, Deep Resistivity, Azimuth Angle, Inclination Angle, and True Vertical Depth from one Iraqi directional well. Three existing empirical correlations are based only on Compressional Sonic Wave Time (CSW) for predicting SSW. In the same way of developing previous correlations, a fourth empirical correlation was developed by using all measured data points of SSW and CSW. A comparison demonstrated that utilizing ANN was better for SSW predicting with a higher R2 equal to 0.966 and lower other statistical coefficients than utilizing four empirical correlations, where correlations of Carroll, Freund, Brocher, and developed fourth had R2 equal to 0.7826, 0.7636, 0.6764, and 0.8016, respectively, with other statistical parameters that show the new developed correlation best than the other three existing. The use of ANN or new developed correlation in future SSW calculations is relevant to decision makers due to a number of limitations and target SSW accuracy.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (38)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Analysis of Wave Propagation in Detection of Aorta Dieses Using Lumps Analysis
...Show More Authors

In this paper a theoretical attempt is made to determine whether changes in the aorta diameter at different location along the aorta can be detected by brachial artery measurement.  The aorta is divided into six main parts, each part with 4 lumps of 0.018m length. It is assumed that a desired section of the aorta has a radius change of 100,200, 500%. The results show that there is a significant change for part 2 (lumps 5-8) from the other parts. This indicates that the nearest position to the artery gives the significant change in the artery wave pressure while other parts of the aorta have a small effect.

View Publication Preview PDF
Publication Date
Mon May 12 2025
Journal Name
Boundary Value Problems
Minimal wave speed and traveling wave in nonlocal dispersion SIS epidemic model with delay
...Show More Authors

This study examines traveling wave solutions of the SIS epidemic model with nonlocal dispersion and delay. The research shows that a key factor in determining whether traveling waves exist is the basic reproduction number R0. In particular, the system permits nontrivial traveling wave solutions for σ≥σ∗ for R0>1, whereas there are no such solutions for σ<σ∗. This is because there is a minimal wave speed σ∗>0. On the other hand, there are no traveling wave solutions when R0≤1. In conclusion, we provide several numerical simulations that illustrate the existence of TWS.

View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Oct 03 2023
Journal Name
International Journal Of Clinical And Diagnostic Pathology
Gastrointestinal stromal tumors: Clinicopathological correlations.
...Show More Authors

Publication Date
Sat Mar 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Hydrocarbon Minimum Miscibility Pressure Correlations
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Artificial Neural Networks Modeling of Total Dissolved Solid in the Selected Locations on Tigris River, Iraq
...Show More Authors

The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge

... Show More
View Publication Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Ain Shams Engineering Journal
Neural network modeling of rutting performance for sustainable asphalt mixtures modified by industrial waste alumina
...Show More Authors

Scopus (19)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Automatic Spike Neural Technique for Slicing Bandwidth Estimated Virtual Buffer-Size in Network Environment
...Show More Authors

The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network
...Show More Authors

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.

Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories &amp; Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref