Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data that was adopted by the ANN study was used here where it is comprised of 1922 measured points of SSW and the other nine parameters of Gamma Ray, Compressional Sonic, Caliper, Neutron Log, Density Log, Deep Resistivity, Azimuth Angle, Inclination Angle, and True Vertical Depth from one Iraqi directional well. Three existing empirical correlations are based only on Compressional Sonic Wave Time (CSW) for predicting SSW. In the same way of developing previous correlations, a fourth empirical correlation was developed by using all measured data points of SSW and CSW. A comparison demonstrated that utilizing ANN was better for SSW predicting with a higher R2 equal to 0.966 and lower other statistical coefficients than utilizing four empirical correlations, where correlations of Carroll, Freund, Brocher, and developed fourth had R2 equal to 0.7826, 0.7636, 0.6764, and 0.8016, respectively, with other statistical parameters that show the new developed correlation best than the other three existing. The use of ANN or new developed correlation in future SSW calculations is relevant to decision makers due to a number of limitations and target SSW accuracy.
Background: Chronic myelogenous leukemia is a malignant hematological disease of hematopoietic stem cells. It is difficult to adapt treatment to each patient's risk level because there are currently few clinical tests and no molecular diagnostics that may predict a patient's clock for the advancement of CML at the time of chronic phase diagnosis. Biomarkers that can differentiate people based on the outcome at diagnosis are needed for blast crisis prevention and response improvement. Objective: This study is an effort to exploit the SLC25A3 gene as a potential biomarker for CML. Methods: RT-qPCR was applied to assess the expression levels of the SLC25A3 gene. Results: In comparison to the mean ΔCt of the control group, which was found to b
... Show MoreThe present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.
Objective: The evaluation of serum osteocalcin (OSN) for Iraqi infertile patients to see the effect of osteocalcin insufficiency, which may lead to a decreased level of testosterone production in males that may cause infertility. Methods: Forty two newly diagnosed infertile males age range (24–47) years and thirty two apparently healthy males as controls age range (25–58) years. Serum levels of testosterone (TEST), stimulating follicle hormone (FSH) and luteinizing hormone (LH), prolactin (PROL), osteocalcin OSN, and fasting blood sugar (FBS) were performed in both patients and controls. Estimation of serum OSN by Immulite1000 auto-analyzer, TEST, FSH, LH, PROL, and FBS by Immulite2000 auto-analyzer. Results: Infertile patients
... Show Morethe present study is designed to evaluate the effect of low level laser irradiation on the immume system when administere intravenoisly
Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreBackground: White spot lesion is the first visible sign of dental caries that is characterized by demineralized lesion underneath an intact surface. Several studies demonstrated that they could be treated using noninvasive techniques like the use of fluoride or casein phospho-peptide and amorphous calcium phosphate. Improvement in aesthetic outcomes by covering the demineralized enamel is one of the advantages of the use of resin infiltration and opal-ustre microabrasion, which are two new techniques that had been used for treatment of white spot lesion. The purpose of this study was to evaluate the impact of resin infiltration and microabrasion in the microhardness of the artificial white spot lesions at various depths. Material and method
... Show More