Electrospun nanofiber membranes are employed in a variety of applications due to its unique features. the nanofibers' characterizations are effected by the polymer solution. The used solvent for dissolving the polymer powder is critical in preparing the precursor solution. In this paper, the Polyacrylonitrile (PAN)-based nanofibers were prepared in a concentration of 10 wt.% using various solvents (NMP, DMF, and DMSO). The surface morphology, porosity, and the mechanical strength of the three prepared 10 wt.% PAN-based nanofibers membranes (PAN/NMP, PAN/DMF, and PAN/DMSO) were characterized using the Scanning Electron Microscopy (SEM), Dry-wet Weights method, and Dynamic Mechanical Analyzer (DMA). Using DMF as a solvent resulted in a long, beaded, homogeneous, and smooth surface fibrous structure with an average diameter of 260 nm, which was the best among the solvents tested in this study in terms of porosity and mechanical strength.
The synthesis, characterization and mesomorphic properties of two new series of triazine-core based liquid crystals have been investigated. The amino triazine derivatives were characterized by elemental analysis, Fourier transforms infrared (FTIR), 1HNMR and mass spectroscopy. The liquid crystalline properties of these compounds were examined by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). DSC and POM confirmed nematic (N) and columnar mesophase textures of the materials. The formation of mesomorphic properties was found to be dependent on the number of methylene unit in alkoxy side chains.
Two- dimensional numerical simulations are carried out to study the elements of observing a Dirac point source and a Dirac binary system. The essential features of this simulation are demonstrated in terms of the point spread function and the modulation transfer function. Two mathematical equations have been extracted to present, firstly the relationship between the radius of optical telescope and the distance between the central frequency and cut-off frequency of the optical telescope, secondly the relationship between the radius of the optical telescope and the average frequency components of the modulation transfer function.
This paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show MoreBackground: Animal bite is one of the public health problems all over the world, especially in poor countries. Animal bites have an impact on human health due to rabies disease, which is a viral transmitted disease from animal to human with a high mortality rate.
Objective: To determine the epidemiological characteristics of animal bite cases by person, time, and place.
Method: Descriptive cross sectional study was done by reviewing cases caused by animal bites., Data including the demographic characteristics of age, gender, occupation, site of bite, and attending health institutions searching treatment were all included.
Results: There were 11600 animal bite cases. Most of bites caused by stray dogs 11577(99.8%), and the males
The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed a
... Show More