Preferred Language
Articles
/
ijcpe-894
Artificial Intelligent Models for Detection and Prediction of Lost Circulation Events: A Review
...Show More Authors

Lost circulation or losses in drilling fluid is one of the most important problems in the oil and gas industry, and it appeared at the beginning of this industry, which caused many problems during the drilling process, which may lead to closing the well and stopping the drilling process. The drilling muds are relatively expensive, especially the muds that contain oil-based mud or that contain special additives, so it is not economically beneficial to waste and lose these muds. The treatment of drilling fluid losses is also somewhat expensive as a result of the wasted time that it caused, as well as the high cost of materials used in the treatment such as heavy materials, cement, and others. The best way to deal with drilling fluid losses is to prevent them. Drilling fluid loss is a complex problem that is difficult to predict using simple and traditional methods. Artificial intelligence represents a modern and accurate technology for solving complex problems such as drilling fluid loss. Artificial intelligence through supervised machine learning provides the possibility of predicting these losses before they occur based on field data such as drilling fluid properties, drilling parameters, rock properties, and geomechanical parameters that are related to the loss of circulation of the wells suffered from losses problem located in the same area.

   In this paper, several supervised machine learning models have been reviewed that were used for detecting and predicting of loss of drilling fluids during the drilling process. The paper provides an inclusive review of drilling fluid prediction and detection from simplest to more complected intelligent models.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Artificial Neural Network Model for Wastewater Projects Maintenance Management Plan
...Show More Authors

Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Obstacles Avoidance for Mobile Robot Using Enhanced Artificial Potential Field
...Show More Authors

In this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 18 2021
Journal Name
Chemical Papers
Analytical methods for the identification of micro/nano metals in e-cigarette emission samples: a review
...Show More Authors

View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Aug 18 2021
Journal Name
Chemical Papers
Analytical methods for the identification of micro/nano metals in e-cigarette emission samples: a review
...Show More Authors

View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Dec 31 2024
Journal Name
Iraqi Geological Journal
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are

... Show More
View Publication
Scopus (13)
Crossref (6)
Scopus Crossref
Publication Date
Fri Nov 30 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
Damage pattern scope prediction for well point dewatering on building foundations
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction By Classical and Flow Zone Indictor (FZI) Methods for an Iraqi Gas Field
...Show More Authors

The permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.

View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Sustainable Chemistry And Pharmacy
A sustainable approach to utilize olive pips for the sorption of lead ions: Numerical modeling with aid of artificial neural network
...Show More Authors

Scopus (23)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
A Tri-Gene Ontology Migration Operator for Improving the Performance of Meta-heuristics in Complex Detection Problems
...Show More Authors

      Detecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulate

... Show More
Scopus (3)
Scopus Crossref