Preferred Language
Articles
/
ijcpe-894
Artificial Intelligent Models for Detection and Prediction of Lost Circulation Events: A Review
...Show More Authors

Lost circulation or losses in drilling fluid is one of the most important problems in the oil and gas industry, and it appeared at the beginning of this industry, which caused many problems during the drilling process, which may lead to closing the well and stopping the drilling process. The drilling muds are relatively expensive, especially the muds that contain oil-based mud or that contain special additives, so it is not economically beneficial to waste and lose these muds. The treatment of drilling fluid losses is also somewhat expensive as a result of the wasted time that it caused, as well as the high cost of materials used in the treatment such as heavy materials, cement, and others. The best way to deal with drilling fluid losses is to prevent them. Drilling fluid loss is a complex problem that is difficult to predict using simple and traditional methods. Artificial intelligence represents a modern and accurate technology for solving complex problems such as drilling fluid loss. Artificial intelligence through supervised machine learning provides the possibility of predicting these losses before they occur based on field data such as drilling fluid properties, drilling parameters, rock properties, and geomechanical parameters that are related to the loss of circulation of the wells suffered from losses problem located in the same area.

   In this paper, several supervised machine learning models have been reviewed that were used for detecting and predicting of loss of drilling fluids during the drilling process. The paper provides an inclusive review of drilling fluid prediction and detection from simplest to more complected intelligent models.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 06 2023
Journal Name
Eneurologicalsci
Dandy-Walker syndrome associated with a giant occipital meningocele: A case report and a literature review
...Show More Authors

HTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023

View Publication
Scopus (2)
Scopus
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Prediction Unconfined Compressive Strength for Different Lithology Using Various Wireline Type and Core Data for Southern Iraqi Field
...Show More Authors

Unconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria.  Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core.  Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Computer Model Application for Sorting and Grading Citrus Aurantium Using Image Processing and Artificial Neural Network
...Show More Authors
Abstract<p>This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 16 2021
Journal Name
Journal Of Advance Research In Chemical Sciences
Study of Schiff Bases Complexes of Trimethoprim: A Review
...Show More Authors

Trimethoprim derivative Schiff bases are versatile ligands synthesized with carbonyl groups from the condensation of primary amines (amino acids). Because of their broad range of biological activity, these compounds are very important in the medical and pharmaceutical fields. Biological activities such as antibacterial, antifungal and antitumor activity are often seen. Transition metal complexes derived from biological activity Schiff base ligands have been commonly used

Publication Date
Thu Dec 16 2021
Journal Name
Journal Of Advance Research In Chemical Sciences
Study of Schiff Bases Complexes of Trimethoprim: A Review
...Show More Authors

Trimethoprim derivative Schiff bases are versatile ligands synthesized with carbonyl groups from the condensation of primary amines (amino acids). Because of their broad range of biological activity, these compounds are very important in the medical and pharmaceutical fields. Biological activities such as antibacterial, antifungal and antitumor activity are often seen. Transition metal complexes derived from biological activity Schiff base ligands have been commonly used.

View Publication Preview PDF
Publication Date
Tue Nov 12 2024
Journal Name
International Journal Of Social Science Humanity &amp; Management Research
Sustainable Development in Organization: A Literature Review
...Show More Authors

The current study aimed to review previous scholarly efforts to understand the concept of sustainable development, its practices, and its significance for public institutions. The study focuses on the dimensions of sustainable development—environmental, social, and economic—within public institutions. Sustainable development allows these institutions to balance environmental protection, economic growth, and social justice, ensuring the prosperity of both current and future generations. Furthermore, sustainable development is crucial for maintaining organizational performance. The review bridges knowledge gaps related to sustainable development and utilizes an analytical approach, surveying previous studies on the topic. The sele

... Show More
View Publication
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Annals Of Tropical Medicine And Public Health
Dithiocarbamates derivatives as anticancer agents: A Review
...Show More Authors

View Publication
Crossref (7)
Crossref