The petroleum industry, which is one of the pillars of the national economy, has the potential to generate vast wealth and employment possibilities. The transportation of petroleum products is complicated and changeable because of the hazards caused by the corrosion consequences. Hazardous chemical leaks caused by natural disasters may harm the environment, resulting in significant economic losses. It significantly threatens the aim for sustainable development. When a result, determining the likelihood of leakage and the potential for environmental harm, it becomes a top priority for decision-makers as they develop maintenance plans. This study aims to provide an in-depth understanding of the risks associated with oil and gas pipelines. It also tries to identify essential risk factors in flowline projects, as well as their likelihood and severity, in order to reduce loss of life and increased expenditures as a result of safety issues. The monetary quantification was used to determine the leakage-induced environmental losses. Using a 5-by-5 probability-currency matrix, the level of environmental risk was evaluated the safety and risk-based inspection (RBI) is evaluated through the use of specific schedules to determine the likelihood of failure (LOF) and Consequence of Failure (COF). The risk level appears in the matrix, and appropriate maintenance steps should be taken to reduce risks, such as injecting corrosion inhibitors to protect the Pipelines, activating cathodic protection or coating. Overall, this research contributes to the prevention of petroleum product leakage due to the corrosion consequences in the transportation sector. Also, encourage non-environmental risk decision-makers to gain a better understanding of the risk level.
New ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreThe multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreThe performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show MoreBaghdad city has been faced numerous issues related to freshwater environment deteriorations due to many reasons, mainly was the discharge of wastewater without adequate treatment. Al- Rustamiya Wastewater Treatment Plant (WWTP) have been constructed among many plants in Baghdad city to reduce the amount of wastewater discharged into natural environment and its subsequent adverse effects. This study was conducted to evaluate the performance of the plant which consist of a conventional activated sludge (CAS) and sequencing batch reactors (SBR) systems as secondary treatment units and its ability to meet Iraqi specifications. A reliability level determination and analysis also were conducted to find the plant's stability and its capabi
... Show MoreThis study designed to prepare ultrafine apixaban (APX) o/w nanoemulsion (NE) based gel with droplet size below 50 nm as a good method for transdermal APX delivery without using permeation enhancer, alternatively, the formulation components itself act as permeation enhancer. APX, a potent oral anticoagulant drug that selectively and directly inhibit coagulation factor Xa, was selected as a good candidate for transdermal delivery as it displays poor water solubility (0.028 mg/mL) and low bioavailability (50%). APX-NE gel was prepared using triacetin, triton-x-100 and carbitol as oil phase, surfactant and cosurfactant respectively, while Carbopol 940 used as a gelling agent. Ex vivo permeation of APX-NE gel through human stratum c
... Show MoreIn drilling fluid program, selecting the drilling fluid that will reduce the lost time is the first objective, and will be economical regardless of its cost. The amount and type of solids in drilling fluid is the primary control of the rheological and filtration properties. Palygorskite clay (attapulgite) is an active solid that has the ability to reactive with its environment and form a gel structure within a fluid and due to its stability in the presence of brines and electrolytes this type of clay is preferred for use. The aim of this study is to improve properties of Iraqi palygorskite (PAL) by adding different chemical additives such as caustic soda NaOH and soda ash Na2CO3 with a different con
... Show MoreThe electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es
... Show MoreSymmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a rand
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show More