The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current density, and the minimum Phenol concentration obtained after 6 h of electrolysis at 8 mA/cm2 is equal to 7.82 ppm starting from an initial concentration about 155 ppm. The results obtained from the kinetic study of Phenol oxidation at different current density showed that the reaction followed pseudo first-order kinetics regarding current density. Energetic parameters like specific power consumption and current efficiency were also estimated at different current density. The results showed that an increase in current density caused an increase in the specific power consumption of the process and decreased current efficiency.
In this paper, an experimental study was conducted to enhance the thermal performance of a double-pass solar air heater (SAH) using phase change material (PCM) for thermal storage at climatic conditions of Baghdad city - Iraq. The double-pass solar air heater integrated with thermal storage system was manufactured and tested to ensure that the air heating reserved after the absence of the sun. The rectangular cavity filled with paraffin wax was used as a latent heat storage and incorporated into the lower channel of solar air heater. Experiments were carried out to evaluate the charging and discharging characteristics of two similar designed solar air collectors with and without using phase change material at a constant
... Show More<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>
In this paper we proposed the method of X-ray fluorescence (XRF) determination of some essential trace elements in medicinal herbs and vitamin-mineral complexes at the level of 100-101 mg/ml. To increase sensitivity and selectivity of the determination we simple and effective approach based on the extraction of metal ions from aqueous solutions with chemically modified polyurethane foam sorbents followed by direct XRF analysis. The conditions of sorption preconcentration of Co(II), Ni(II) and Zn(II) ions with modified sorbents were optimized. The proposed approach is used for the determination of trace elements in several kinds of medicinal herbs (coltsfoot leaves, nettle leaves and yarrow herb) and vitamin-mineral
... Show MoreAn experimental investigation has been carried out for zinc-nickel (Zn-Ni) electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM). Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX).
It has been found that the best bath temperature
... Show MoreIn this study, the aqueous extract of (Typha domingensis Pers.) pollen grain (qurraid) to know its ability to manufacture silver nanoparticles. Qurraid is a semi-solid yellow food substance, sold in Basra markets and eaten by the local population. It is made from the pollen of the T. domingensis Pers. plant after being pressed and treated with water vapor. The Gas chromatography–mass spectrometry (GC-MS) reaction was done to identify the active compounds of qurraid aqueous extract. The ability of the aqueous extract of qurraid to manufacture silver nanoparticles was tested, and the construction of silver nanoparticles was inferred by the reaction mixture's color, which ranged from yellow to dark brown. The synthesi
... Show MorePoly(L-lactic acid) (PLLA)/poly(caprolactone) (PCL) and two types of organoclay (OMMT) including a fatty amide and ocatdecylamine montmorillonite (FA-MMT and ODA-MMT) were employed to produce polymer nanocomposites by melt blending. Materials were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), elemental analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties were also investigated for these nanocomposites. The nanocomposites showed increasing mechanical properties and thermal stability. XRD results indicated that the materials formed nanocomposites. SEM morphology showed that increasing content of OMMT reduc
... Show More