This study investigates the treatment of used lubricating oils from AL-Mussaib Gas Power Station Company-Iraq, which was treated with different extractive solvents (heptane and 2-propanol). The performance activity of these solvents in the extraction process was examined and evaluated experimentally. Operating parameters were solvent to oil ratios of (1:2, 1:4, 1:6, and 1:8), mixing time (20, 35, 50, and 65 min), temperatures (30, 40, 50, and 60 ºC), and mixing speed (500 rpm). These parameters were studied and analyzed. The quality is determined by the measuring and assessment of important characteristics specially viscosity, viscosity index, specific gravity, pour point, flash point, and ash content. The results confirm that the solvent 2-Propanol gave great proficiency with the most elevated percent of sludge removal compared with heptane. The greatest percentage of waste removal is enhanced when the solvent/oil ratio increases with optimal economic aspects. The significant characteristics of the reused lubricating oil were estimated. The outcome of the results indicates that the adjustment of the characteristics of reused oil has great effectiveness and the best working conditions for 2-Propanol (35 min, 1:6 S/O ratio, 40 ºC), and heptane (50 min, 1:6 S/O ratio, 50 ºC).
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreThe present work is concerned with the finding of the optimum conditions for biochemical wastewater treatment for a local tannery. The water samples were taken from outline areas (the wastewater of the chrome and vegetable tannery) in equal volumes and subjected to sedimentation, biological treatment, and chemical and natural sedimentation treatment.
The Box-Wilson method of experimental design was adopted to find useful relationships between three operating variables that affect the treatment processes (temperature, aeration period and phosphate concentration) on the Biochemical Oxygen Demand (BOD5).
The experimental data collected by this method were successfully fitted to a second order polynomial mathematical model. The most fa
A comparative study was carried out to evaluate alkaloid antibacterial activity which was extracted from the root bark Punica granatum L. by liquid membrane techniques (SA) and organic solvent traditional techniques (SB). The screening of the antimicrobial activity was conducted by agar well diffusion method against Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis at three concentration levels (5, 10 and 15 mg/ml). Alkaloid extracts were analyzed by a high performance liquid chromatography (HPLC) method. Among the tested extractions, SB showed the highest antibacterial activity against all five bacterial strains, especially at 15 mg/ml concentration. However, all the B type solution
... Show MoreThe extraction behaviour of a secondary amine (Dioctylamine) and a combination of secondary amine and tertiary amine (Tricapryl amine) toward some of the metal ions were investigated. Two types of diluents were applied, namely, mesitylene and treated Kerosene fraction. The extractability of dioctylamine and different combinations of tertiary amine and secondary amine toward uranium were investigated. The distribution coefficients and the separataion factors of uranium from the metal ions were calculated.
Binary mixtures of three, heavy oil-stocks was subjected to density measurements at temperatures of 30, 35 and 40 °C. and precise data was acquired on the volumetric behavior of these systems. The results are reported in terms of equations for excess specific volumes of mixtures. The heavy oil-stocks used were of good varity, namely 40 stock, 60 stock, and 150 stock. The lightest one is 40 stock with °API gravity 33.69 while 60 stock is a middle type and 150 stock is a heavy one, with °API gravity 27.74 and 23.79 respectively. Temperatures in the range of 30-40 °C have a minor effect on excess volume of heavy oil-stock binary mixture thus, insignificant expansion or shrinkage is observed by increasing the temperature this effect beco
... Show MoreThis work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective range of the catalyst –to- oil ratio parameter ( 2, 2.5, 3 and 3.5) respectively. The conversion of heavy vacuum gas
... Show MoreThe fatty acid composition in the seed and flower of Ligustrun lucidum and olive oil was studied by Gas Chromatography. Results showed that the main components of seed oil were Palmitic (C16:0) 5,893% ,Palmitolic acid (C16:1)0,398%, Steaeic (C18:0)2,911% ,Oleic (C18:1)74,984%,Linoleic (C18:2) 12,959%,and Linolenic (C18:3) 0,997%. The proportion of unsaturated fatty acid was above 89,338%, so the seed oil of L. lucidum ait belonged to unsaturated oil which possessed promising application. The components of flower oil were Palmitic (C16:0) 65,674% ,Palmitolic acid (C16:1)6,516%, Steaeic (C18:0)2,641% ,Oleic (C18:1)14,707%,Linoleic (C18:2) 3,113%,and Linolenic (C18:3) 2,70%. The proportion of unsaturated fatty acid and saturated fatty acid wa
... Show More