Preferred Language
Articles
/
ijcpe-85
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Hydraulic Flow Units and Neural Networks
...Show More Authors

Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.

   This paper will try to develop the permeability predictive model for one of  Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).

   Histogram analysis, probability analysis and Log-Log plot of Reservoir Quality Index (RQI) versus normalized porosity (øz) are presented to identify optimal hydraulic flow units. Four HFUs were distinguished in this study area with good correlation coefficient for each HFU (R2=0.99), therefore permeability can be predicted from porosity accurately if rock type is known.

   Conventional core analysis and well log data were obtained in well 1 and 2 in one of carbonate Iraqi oil field. The relationship between core and well log data was determined by Artificial Neural Network (ANN) in cored wells to develop the predictive model and then was used to develop the flow units prediction to un-cored wells. Finally permeability can be calculated in each HFU using effective porosity and mean FZI in these HFUs. Validation of the models evaluated in a separate cored well (Blind-Test) which exists in the same formation. The results showed that permeability prediction from ANN and HFU matched well with the measured permeability from core data with R2 =0.94 and ARE= 1.04%.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 11 2019
Journal Name
Day 3 Wed, November 13, 2019
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the</p> ... Show More
View Publication
Crossref (9)
Crossref
Publication Date
Thu Jun 04 2020
Journal Name
Journal Of Petroleum Exploration And Production Technology
Re-assessment and tune-up gas condensate reservoir potential in Northern Iraq using material balance and reservoir simulation result techniques
...Show More Authors
Abstract<p>The main parameter that drives oil industry contract investment and set up economic feasibility study for approving field development plan is hydrocarbon reservoir potential. So a qualified experience should be deeply afforded to correctly evaluate hydrocarbons reserve by applying different techniques at each phase of field management, through collecting and using valid and representative data sources, starting from exploration phase and tune-up by development phase. Commonly, volumetric calculation is the main technique for estimate reservoir potential using available information at exploration stage which is quite few data; in most cases, this technique estimate big figure of reserve. In this study</p> ... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
The Possibility of Applying Agile Internal Auditing in the Iraqi Economic Units
...Show More Authors

The research problem is that the traditional methods of internal auditing are somewhat heavy with long and rigid procedures for the members of the audit process team, especially in light of the current developments that are reflected in the business environment and internal audit reports, so it is necessary to reconsider the traditional internal audit work method and assess the extent of its development by agile methods to reduce the time of the audit process on the activities and elements that add value and direct the effort and time to the activities and elements that add value to the work of the economic unit and the report of the internal auditor.

The research aims to study the possibility of applying agile internal auditing

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 23 2011
Journal Name
International Journal Of The Physical Sciences
Fast prediction of power transfer stability index based on radial basis function neural network
...Show More Authors

View Publication
Scopus (16)
Crossref (4)
Scopus Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Geological Journal
Integrated Core and Log Data to Determine the Reservoir Flow Unit and Rock Facies for Mishrif Formation in South Eastern Iraq
...Show More Authors

This work represents study the rock facies and flow unit classification for the Mishrif carbonate reservoir in Buzurgan oil Field, which located n the south eastern Iraq, using wire line logs, core samples and petrophysical data (log porosity and core permeability). Hydraulic flow units were identified using flow zone indicator approach and assessed within each rock type to reach better understanding of the controlling role of pore types and geometry in reservoir quality variations. Additionally, distribution of sedimentary facies and Rock Fabric Number along with porosity and permeability was analyzed in three wells (BU-1, BU-2, and BU-3). The interactive Petrophysics - IP software is used to assess the rock fabric number, flow zon

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Mar 24 2021
Journal Name
Ieee Access
Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System
...Show More Authors

An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to

... Show More
Scopus (11)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Risk management in industrial economic units by using Pareto Chart
...Show More Authors

In the light of the globalization Which surrounds the business environment and whose impact has been reflected on industrial economic units  the whole world has become a single market that affects its variables on all units and is affected by the economic contribution of each economic unit as much as its share. The problem of this research is that the use of Pareto analysis enables industrial economic units to diagnose the risks surrounding them , so the main objective of the research was to classify risks into both internal and external types and identify any risks that require more attention.

The research was based on the hypothesis that Pareto analysis used, risks can be identified and addressed before they occur.

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Accounting Measurement of Environmental Effects and isclosure it: Applicatiory research in one of Iraqi manufacturing state
...Show More Authors

This research aims to Presented model can be applicable – in the frame of current accounting implementations - to measure environmental effects and disclosure then in the financial statements of economic entities after determined the environmental performance scopes of environmental activities that is works by this entities , because of importance of accounting information which presentation by accounting systems which's effectiveness tool on hand of decision maker about site plans and goals and drawing policies aims protection environment sustainable the represented of naturalism wealth elements . The researcher could be able to application his suggested model which's proof the ability to environmental accounting measurement and discl

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref