The Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and fluid saturation in carbonate rocks. A strong linear correlation between P-wave velocity and S-wave velocity and between P-wave velocity and density rock was found. The resulting linear equations can be used to estimate P-wave velocity from the S-wave velocity in the case of both. The results of multiple regression analysis indicated that the density, porosity, water-saturated, and shear wave velocity (VS) are strongly related to Vp.
Abstract
The research Compared two methods for estimating fourparametersof the compound exponential Weibull - Poisson distribution which are the maximum likelihood method and the Downhill Simplex algorithm. Depending on two data cases, the first one assumed the original data (Non-polluting), while the second one assumeddata contamination. Simulation experimentswere conducted for different sample sizes and initial values of parameters and under different levels of contamination. Downhill Simplex algorithm was found to be the best method for in the estimation of the parameters, the probability function and the reliability function of the compound distribution in cases of natural and contaminateddata.
... Show More
Visual analytics becomes an important approach for discovering patterns in big data. As visualization struggles from high dimensionality of data, issues like concept hierarchy on each dimension add more difficulty and make visualization a prohibitive task. Data cube offers multi-perspective aggregated views of large data sets and has important applications in business and many other areas. It has high dimensionality, concept hierarchy, vast number of cells, and comes with special exploration operations such as roll-up, drill-down, slicing and dicing. All these issues make data cubes very difficult to visually explore. Most existing approaches visualize a data cube in 2D space and require preprocessing steps. In this paper, we propose a visu
... Show MoreThe using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible parametric models and these models were nonparametric, many researchers, are interested in the study of the function of permanence and its estimation methods, one of these non-parametric methods.
For work of purpose statistical inference parameters around the statistical distribution for life times which censored data , on the experimental section of this thesis has been the comparison of non-parametric methods of permanence function, the existence
... Show MorePortable devices such as smartphones, tablet PCs, and PDAs are a useful combination of hardware and software turned toward the mobile workers. While they present the ability to review documents, communicate via electronic mail, appointments management, meetings, etc. They usually lack a variety of essential security features. To address the security concerns of sensitive data, many individuals and organizations, knowing the associated threats mitigate them through improving authentication of users, encryption of content, protection from malware, firewalls, intrusion prevention, etc. However, no standards have been developed yet to determine whether such mobile data management systems adequately provide the fu
... Show MoreGivers of foreign Audit about Social Responsibility of Profit Organization. The recent time is charcterstically with big economic Organization activities, because there are many transactions between these Organizations and different financial markets development techniques.
This encourgage business men to increase their efforts for investment in these markets. Because the Accounting is in general terms it represents a language of these Unions Activities and translate them in to fact numbers, for that there is need for Accounting recording for certain of these Organizations behavior and their harmonization with their Objectives.
In this respect the Audit function comes to che
... Show MoreAbstract
A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.
Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.
The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show More