The aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increasing the initial of metal concentration while above the 85 ppm, the removal efficiency was decreased. The phenomenon of adsorption of heavy metals on to Al-Zahdi Iraqi Date pits is exothermic process. The maximum adsorption capacity according to the Langmuir equation was 0.21, 0.149, and 0.132 mmol/g for Cu2+, Zn2+, and Ni2+ respectively. The adsorption equilibrium was well described by the Freundlich model. The results of Freundlich constants indicated that the adsorption capacity and adsorption intensity of Copper is larger than the Zinc and Nickel. The intraparticle diffusion was involved is this process but it is not the controlling step. The results of this study may inspire to find the optimal operating conditions for adsorption and develop that with large-scale production to clean the polluted water with heavy metals.
The present study was conducted to determine the optimum conditions required for lipase enzyme activity extracted from germinated sunflower seeds, including temperature, pH, agitation, time of incubation, enzyme concentration, substrate type, and concentrations of mineral salts and EDTA. Optimum pH, temperature and time of incubation required for lipase stability were also determined. The results showede optimum lipase activity (3.251U/ml) wasund at 30 ÌŠC and pH 7 after 20 minutes of incubation when using 1 ml lipase enzyme with 0.02 ml of CaCl2 (10 mM) at 100 rpm of agitation and in the presence of olive oil as the substrate for enzyme reaction. EDTA appeared to have inhibitory effects, while Ca+2 and Mg+2 have stimulatory effec
... Show MorePermeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreThis study was conducted according to contract with the North Refineries Company-Baiji and deals with the hydrodesulphurization of vacuum gas oil of Kirkuk crude oil, boiling range 611-833 K. A trickle bed reactor packed with a commercial cobalt-molybdenum on alumina catalyst was used. The operating conditions were: temperature range 583-643 K, liquid hourly space velocity range 1.50-3.75 1/h, hydrogen to oil ratio about 250 l/l and pressure kept constant at 3.5MPa.
The results showed that the aromatic content decreased and sulfur removal increased with increasing temperature and decreasing space velocity. The properties (viscosity, density, flash point and carbon residue) of the products decrease with temperature increasing, but the
The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.
A novel metal-organic framework (MOF) sorbent based on tannic acid/copper (TA/Cu) was synthesized and characterized for the application of the anticancer drug imatinib (IMA) from biological samples. The TA/Cu MOF was prepared via a facile coordination reaction and thoroughly characterized by SEM, XRD, and FTIR techniques. Critical parameters influencing the extraction efficiency of imatinib mesylate (IMAM), including pH, ionic strength, desorption solvent, and adsorption-desorption time were optimized. With acetonitrile as the desorption solvent, the method demonstrated a broad linear range of 0.55-300 μg L-1 under ideal conditions. Limits of detection and quantification were found to be 0.16 μg L-1 and 0.55 μg L-1, respectively.
... Show MoreA novel metal-organic framework (MOF) sorbent based on tannic acid/copper (TA/Cu) was synthesized and characterized for the application of the anticancer drug imatinib (IMA) from biological samples. The TA/Cu MOF was prepared via a facile coordination reaction and thoroughly characterized by SEM, XRD, and FTIR techniques. Critical parameters influencing the extraction efficiency of imatinib mesylate (IMAM), including pH, ionic strength, desorption solvent, and adsorption-desorption time were optimized. With acetonitrile as the desorption solvent, the method demonstrated a broad linear range of 0.55-300 μg L-1 under ideal conditions. Limits of detection and quantification were found to be 0.16 μg L-1 and 0.55 μg L-1, respectively.
... Show MoreAn optimization study was conducted to determine the optimal operating pressure for the oil and gas separation vessels in the West Qurna 1 oil field. The ASPEN HYSYS software was employed as an effective tool to analyze the optimal pressure for the second and third-stage separators while maintaining a constant operating pressure for the first stage. The analysis involved 10 cases for each separation stage, revealing that the operating pressure of 3.0 Kg/cm2 and 0.7 Kg/cm2 for the second and third stages, respectively, yielded the optimum oil recovery to the flow tank. These pressure set points were selected based on serval factors including API gravity, oil formation volume factor, and gas-oil ratio from the flow tank. To impro
... Show MoreZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreBackground: Temporomandibular joint (TMJ) is a compound articulation formed from the articular surfaces of the temporal bone and the mandibular condyle.CBCT imaging of TMJ is that it allows accurate measurements of the volume and surface of the condyle. The aim of the study is to assess the sagittal position of mandibular condyle in patients with temporomandibulardysfunction using Cone Beam Computed Tomography in centric occlusion. Materials and Methods: CBCT images for all patients were obtained in an upright position using New Tom Giano CBCT with different field of view (11 x 8), (11 x 5), and (8 x 8) and exposure factors was changed accordingly using NNT version 5.1 software for sagittal reconstruction, anterior, superior and posterior
... Show More