The purpose of this paper is to examine absorbance for the removal of the Red Congo using wheat husk as a biological pesticide. Several experiments have been conducted with the aim of configuring breakthrough data in a fluidized bed reactor. The minimum fluidized velocities of the bed were found to be 0.031 mm/s for mish sizes of (250) µm diameter with study the mass transfer be calculated KL values. The results showed a well-fitting with the experimental data. Different operating conditions were selected: bed height (2, 5 and 10) cm, flow rate (90, 100and 120) ml/sec and particle diameter (250, 600, 1000) µm. The breakthrough curves were plotted for Congo Red, Values showed that the lower the bed, the lower the number of adsorbents and the potential of the weak bed to condense the density of the solution, which also increases the flow rate and will increase the mass transfer rate.
Transparent nano- coating was prepared by Sol-Gel method from titanium dioxide TiO2 which has the ability to self-cleaning coating used for hospitals, laboratories, and places requiring permanent sterilization. Three primary colors are selected (red, blue, and yellow) as preliminary study to the effect of these colors on the nano-coating. Three traditional oil paints color were used as base, then coated by a layer of TiO2-Sol and deposited on the paints. The optical properties of TiO2-Sol were measured; the maximum absorption wavelength at (λmax=387 nm), the refractive index (n=1.4423) and the energy band gap (Eg=3.2 eV). The structure properties found by X-ray diffraction of TiO
The critical micelle concentration (CMC) of nonylphenolethoxylate (NPE) surfactant has been determined by measuring the surface tension as a function of the molar concentration of the surfactant in aqueous and binary mixture of water + methanol solutions at a temperature range from 20?C to 35?C. The interfacial parameters ?max, Amin, ?cmc and ?G?ads were calculated. The results indicate that the CMC increases as the temperature increases and that the addition of methanol the CMC decreases. The thermodynamic parameters such as standard Gibbs free energy (?G?), enthalpy (?H?), and entropy (?S?) of micellization were estimated using the change of CMC with temperature. The enthalpy – entropy compensation behavior of the surfactant was evaluat
... Show MoreThe thermal performance of a flat-plate solar collector (FPSC) using novel heat transfer fluids of aqueous colloidal dispersions of covalently functionalized multi-walled carbon nanotubes with β-Alanine (Ala-MWCNTs) has been studied. Multi-walled carbon nanotubes (MWCNTs) with outside diameters of (< 8 nm) and (20–30 nm) having specific surface areas (SSAs) of (500 m2/g) and (110 m2/g), respectively, were utilized. For each Ala-MWCNTs, waterbased nanofluids were synthesized using weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1%. A MATLAB code was built and a test rig was designed and developed. Heat flux intensities of 600, 800, and 1000 W/m2; mass flow rates of 0.6, 1.0, and 1.4 kg/min; and inlet fluid temperatures of 30, 40, an
... Show MoreCoupling reaction of 4-amino antipyrene with 2,6-dimethyl phenol gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII, ZnII, CdII, and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UVVis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied followin
... Show MoreCoupling reaction of 2-amino benzoic acid with phenol gave the new bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, FT-IR and UV-Vis spectroscopic technique. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentr
... Show MoreThe reactive yellow azo dye (λmax = 420 nm) is widely utilized for textile coloring due to its low-cost stability and tolerance properties. Treatment of dye-containing wastewater by traditional methods is usually inadequate because of its resistance to biological and chemical degradation. From this research, the continuous reactor of an advanced oxidation method supported the use of H2O2/TiO2/UV to remove the coloration of the reactive yellow dye from the discharge. At constant best conditions obtained from the batch reactor tests pH=7, H2O2 dosage = 400 mg/l and TiO2=25mg/l , the aqueous solutions were tested in the continuous reactor at different dye concentration and d
... Show MoreIn this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution
... Show MoreThe paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms
... Show More