Bio-diesel is an attractive fuel fordiesel engines. The feedstock for bio-diesel production is usually vegetable oil, waste cooking oil, or animal fats. This work provides an overview concerning bio-diesel production. Also, this work focuses on the commercial production of biodiesel. The objective is to study the influence of these parameters on the yield of produced. The biodiesel production affecting by many parameters such s alcohol ratio (5%, 10%,15 %, 20%,25%,30%35% vol.), catalyst loading (5,10,15,20,25) g,temperature (45,50,55,60,65,70,75)°C,reaction time (0-6) h, mixing rate (400-1000) rpm. the maximum bio-diesel production yield (95%) was obtained using 20% methanol ratio and 15g biocatalyst at 60°C.
In this study, a novel application of lab-scale dual chambered air-cathode microbial fuel cell (MFC) has been developed for simultaneous bio-treatment of real pharmaceutical wastewater and renewable electricity generation. The microbial fuel cell (MFC) was provided with zeolite-packed anodic compartment and a cation exchange membrane (CEM) to separate the anode and cathode. The performance of the proposed MFC was evaluated in terms of COD removal and power generation based on the activity of the bacterial consortium in the biofilm mobilized on zeolite bearer. The MFC was fueled with real pharmaceutical wastewater having an initial COD concentration equal to 800 mg/L and inoculated with anaerobic aged sludge. Results demo
... Show MoreThe thermal performance of three solar collectors with 3, 6 mm and without perforation absorber plate was assessed experimentally. The experimental tests were implemented in Baghdad during the January and February 2017. Five values of airflow rates range between 0.01 – 0.1 m3/s were used through the test with a constant airflow rate during the test day. The variation of the following parameters air temperature difference, useful energy, absorber plate temperature, and collector efficiency was recorded every 15 minutes. The experimental data reports that the increases the number of absorber plate perforations with a small diameter is more efficient rather than increasing the hole diameter of the absorber plate with decr
... Show MoreWithin this work, to promote the efficiency of organic-based solar cells, a series of novel A-π-D type small molecules were scrutinised. The acceptors which we designed had a moiety of N, N-dimethylaniline as the donor and catechol moiety as the acceptor linked through various conjugated π-linkers. We performed DFT (B3LYP) as well as TD-DFT (CAM-B3LYP) computations using 6-31G (d,p) for scrutinising the impact of various π-linkers upon optoelectronic characteristics, stability, and rate of charge transport. In comparison with the reference molecule, various π-linkers led to a smaller HOMO–LUMO energy gap. Compared to the reference molecule, there was a considerable red shift in the molecules under study (A1–A4). Therefore, based on
... Show MoreThe study aims to identify the mechanical and electrical activities of the heart according to the energy systems of advanced players and to detect the differences between the energy systems in terms of the mechanical and electrical activities of the heart for advanced players. It was clear from the results of the significance of the differences between the three groups according to the energy systems of the advanced players in all research variables that (the non-oxygenic system "Lactic"), which represents the advanced players in the arches (800 m, 1500 m) was the first in most tests of mechanical and electrical activities of the heart, which is (Margaria-Kalamen, Wingate, systolic muscle strength of the heart FC, Stroke Volume SV
... Show MoreThe capacity factor is the main factor in assessing the efficiency of wind Turbine. This paper presents a procedure to find the optimal wind turbine for five different locations in Iraq based on finding the highest capacity factor of wind turbine for different locations. The wind data for twelve successive years (2009-2020) of five locations in Iraq are collected and analyzed. The longitudes and latitudes of the candidate sites are (44.3661o E, 33.3152o N), (47.7738o E, 30.5258o N), (45.8160o E, 32.5165o N), (44.33265o E, 32.0107o N) and (46.25691o E, 31.0510o N) for Baghdad, Basrah, Al-Kut, Al-Najaf, and Al-Nasiriyah respectively. The average wind velocity, standard deviation, Weibull shape and scale factors, and probability density functi
... Show MoreIn this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.
Firstly, in this study, a brief updated description and applications of different solar collectors used in renewable energy systems for supplying electric and thermal energy was presented. Secondly, an attempt was made to utilize tilting orientation of solar collector for maximizing collector energy with time in respect to horizontal orientation. For energy calculation, global solar radiation was used since they are directly related. For that purpose, field measurements of half-hourly radiation on two flat panels of tilting and horizontal orientations were carried out throughout 8-month period under local climate of Baghdad. Then, energy gain and radiation level averages were calculated based on the field radiation
... Show More<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m
... Show MoreEnergy use is second to staffing in building operating costs. Sustainable technology in the energy sector is based on utilizing renewable sources of energy such as solar, wind, glazing systems, insulation. Other areas of focus include heating, ventilation and air conditioning; novel materials and construction methods; improved sensors and monitoring systems; and advanced simulation tools that can help building designers make more energy efficient choices. The objective of this research is studying the effect of insulations on energy consumption of buildings in Iraq and identifying the amount of energy savings from application th
... Show MoreThis research study experimentally the effect of air flow rate on humidification process
parameters. Experimental data are obtained from air conditioning study unit T110D. Results obtained
from experimental test, calculations and psychometrics software are discussed. The effect of air flow rate
on steam humidification process parameters as a part of air-conditioning processes can be explained
according to obtained results. Results of the steam humidification processes (1,2) with and without
preheating with 5A and 7.5A shows decreasing in dry bulb temperature, humidity ratio, and heat add to
moist air with increasing air flow rate, but humidification load, and total energy of moist air increase with
increasing air flo