Bio-diesel is an attractive fuel fordiesel engines. The feedstock for bio-diesel production is usually vegetable oil, waste cooking oil, or animal fats. This work provides an overview concerning bio-diesel production. Also, this work focuses on the commercial production of biodiesel. The objective is to study the influence of these parameters on the yield of produced. The biodiesel production affecting by many parameters such s alcohol ratio (5%, 10%,15 %, 20%,25%,30%35% vol.), catalyst loading (5,10,15,20,25) g,temperature (45,50,55,60,65,70,75)°C,reaction time (0-6) h, mixing rate (400-1000) rpm. the maximum bio-diesel production yield (95%) was obtained using 20% methanol ratio and 15g biocatalyst at 60°C.
Abstract
Background: The novel coronavirus 2 (SARS?CoV?2) pandemic is a pulmonary disease, which leads to cardiac, hematologic, and renal complications. Anticoagulants are used for COVID-19 infected patients because the infection increases the risk of thrombosis. The world health organization (WHO), recommend prophylaxis dose of anticoagulants: (Enoxaparin or unfractionated Heparin for hospitalized patients with COVID-19 disease. This has created an urgent need to identify effective medications for COVID-19 prevention and treatment. The value of COVID-19 treatments is affected by cost-effectiveness analysis (CEA) to inform relative value and how to best maximize social welfare through eviden
... Show MoreIn this study, the radon gas concentration as well as the annual effective dose in leaves of the Malvasylvestris (Khabbaz) plant used in the traditional treatment and as food in Iraq, for this, it is necessary to evaluate the concentrations radon gas, which were measured using solid state nuclear track detectors (SSNTDs) CR-39 technique. The concentration and annual effective dose in samples were collected from Baghdad city ranged from minimum to maximum value 15.815 , 0.498 , 54.445 , 1.717 respectively, while the values of concentration and annual effective dose in a sample collected from Karbala are 15.297 ,0.482 . These values of concentration and annual effective dose less were compared with th
... Show MoreAbstract Background: The novel coronavirus 2 (SARS?CoV?2) pandemic is a pulmonary disease, which leads to cardiac, hematologic, and renal complications. Anticoagulants are used for COVID-19 infected patients because the infection increases the risk of thrombosis. The world health organization (WHO), recommend prophylaxis dose of anticoagulants: (Enoxaparin or unfractionated Heparin for hospitalized patients with COVID-19 disease. This has created an urgent need to identify effective medications for COVID-19 prevention and treatment. The value of COVID-19 treatments is affected by cost-effectiveness analysis (CEA) to inform relative value and how to best maximize social welfare through evidence-based pricing decisions. O
... Show MoreThe removal of direct blue 71 dye from a prepared wastewater was studied employing batch electrocoagulation (EC) cell. The electrodes of aluminum were used. The influence of process variables which include initial pH (2.0-12.0), wastewater conductivity (0.8 -12.57) mS/cm , initial dye concentration (30 -210) mg/L, electrolysis time (3-12) min, current density (10-50) mA/cm2 were studied in order to maximize the color removal from wastewater. Experimental results showed that the color removal yield increases with increasing pH until pH 6.0 after that it decreased with increasing pH. The color removal increased with increasing current density, wastewater conductivity, electrolysis time, and decreased with increasing the concen
... Show MoreIn this work, prepared new ligand namely 5-(2,4-dichloro-phenyl)-1,3,4-oxadiazole-2-(3H)-thion, was obtained from the 2,4-dichlorobenzoyl chloride with hydrazine, after that reaxtion with CS2/KOH in methanol.
SYNTHESIS AND CHARACTERISATION OF NEWCo(II), Zn(II) AND Cd(II) COMPLEXES DERIVED FROM OXADIAZOLE LIGAND AND 1,10-PHENANTHROLINE AS Co-LIGAND
Removing Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.