MCM-48 zeolites have unique properties from the surfaces and structure point of view as it’s shown in the results ,and unique and very sensitive to be prepared, have been experimentally prepared and utilized as a second-generation/ acid - catalyst for esterification reactions of oleic acid as a model oil for a free fatty acid source with Ethanol. The characterization of the catalyst used in the reaction has been identified by various methods indicating the prepared MCM-48 is highly matching the profile of common commercial MCM-48 zeolite. The XRF results show domination of SiO2 on the chemical structure with 99.1% and agreeable with the expected from MCM-48 for it's of silica-based, and the SEM results show the cubic crystallographic space group compatible with Ia3d space group giving the hexagonal surface structure. The AFM test gave an average particle diameter of 97.51 nm and an average catalyst roughness of 0.855 nm. Esterification reaction of oleic acid with ethanol on MCM-48 has been carried in a batch reactor with 5% the prepared MCM-48 zeolite catalyst loading gives 81% of conversion after one hour at 353K
The present study reports the effect of temperature and liquid hourly space velocity (LHSV) on the cumene cracking reaction rate and selectivity by using a laboratory continuous flow unit with fixed bed reactor operating at atmospheric pressure. The prepared HX zeolite was made from Iraqi kaolin with good crystallinity .The activity and selectivity of prepared HX-zeolite was compared with standard HY zeolite and HX zeolite catalysts in the temperature range of 673-823K and LHSV of 0.7-2.5 h-1 . It was found that the cumene conversion increases with increasing temperature and decreasing LHSV at 823K and LHSV of 0.7 h-1 the conversions 65.32, 42.88 and 59.42 mol% for HY, HX and prepared HX catalysts respectively and at LHSV of 2.5 h-1 and th
... Show MoreFaujasite type NaY zeolite catalyst was prepared from locally available kaolin, then the prepared NaY zeolite have been modified by exchanging of sodium ion with ammonium to produce NH4Y zeolite. NH4Y zeolite was converted to HY zeolite by ion exchanging with oxalic acid. Zinc and nickel promoters have been added to the prepared HY zeolite catalyst, and the effect of these promoters on the catalytic activity of the prepared HY catalyst was studied in fluid catalytic cracking process using light gas oil as a feedstock. The experimental results show that the promoted catalyst gives higher gas oil conversion and gasoline yield than HY zeolite catalyst at the same reaction temperature and WHSV. It was also found that the promoted catalyst gi
... Show MoreProduction of fatty acid esters (biodiesel) from oleic acid and 2-ethylhexanol using sulfated zirconia as solid catalyst for the production of biodiesel was investigated in this work.
The parameters studied were temperature of reaction (100 to 130°C), molar ratio of alcohol to free fatty acid (1:1 to 3:1), concentration of catalyst (0.5 to 3%wt), mixing speed (500 to 900 rpm) and types of sulfated zirconia (i.e modified, commercial, prepared catalyst according to literature and reused catalyst). The results show the best conversion to biodiesel was 97.74% at conditions of 130°C, 3:1, 2wt% and 650 rpm using modified catalyst respectively. Also, modified c
... Show MoreEsterification reaction is most important reaction in biodiesel production. In this study, oleic acid was used as a suggested feedstock to study and simulate production of biodiesel. Batch esterification of oleic acid was carried out at operating conditions; temperature from 40 to 70 °C, ethanol to oleic acid molar ratio from 1/1 to 6/1, H2SO4 as the catalyst 1 and 5% wt of oleic acid, reaction time up to 180 min. The optimum conditions for the esterification reaction were molar ratio of ethanol/oleic acid 6/1, 5%wt H2SO4 relative to oleic acid, 70 °C, 90 min and conversion of oleic 0.92. The activation energy for the suggested model was 26625 J/mole for forward reaction and 42189 J/mole for equilibrium constant. The obtained results s
... Show MoreForty patients with acute lymphoblastic leukemia(ALL) were tested for the serum levels of total sialic acid(TSA) and the immunoglobulins before and after treatnemnt with six diffrent chemotherapy protocols while significantly
Bimetallic Au –Pt catalysts supporting TiO2 were synthesised using two methods; sol immobilization and impregnation methods. The prepared catalyst underwent a thermal treatment process at 400◦ C, while the reduction reaction under the same condition was done and the obtained catalysts were identified with transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). It has been found that the prepared catalysts have a dimension around 2.5 nm and the particles have uniform orders leading to high dispersion of platinum molecules .The prepared catalysts have been examined as efficient photocatalysts to degrade the Crystal violet dye under UV-light. The optimum values of Bimetallic Au –
... Show MoreAlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
AlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
The catalytic activity of faujasite type NaY catalysts prepared from local clay (kaolin) with different Si/Al ratio was studied using cumene cracking as a model for catalytic cracking process in the temperature range of 450-525° C, weight hourly space velocity (WHSV) of 5-20 h1, particle size ≤75μm and atmospheric pressure. The catalytic activity was investigated using experimental laboratory plant scale of fluidized bed reactor.
It was found that the cumene conversion increases with increasing temperature and decreasing WHSV. At 525° C and WHSV 5 h-1, the conversion was 42.36 and 35.43 mol% for catalyst with 3.54 Si/Al ratio and Catalyst with 5.75 Si/Al ratio, respectively, while at 450° C and at the same WHSV, the conversion w