Preferred Language
Articles
/
ijcpe-660
Catalytic Pour Point Reduction and Viscosity Improvement of Lubricating Oil Fractions using Sulfided Nickel-Tungsten Catalysts
...Show More Authors

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of Solvent Extraction of Light Lubricating Oil on Viscosity Index and Chemical Composition
...Show More Authors

An investigation was conducted for the improvement of viscosity index of light lubricating oil fraction (40 stock)
obtained from vacuum distillation unit of lube oil plant of Daura Refinery, using solvent extraction process.
In this study furfural solvent was used to extract the undesirable materials which reduce the viscosity index of raw
lubricating oil fraction.
The studied effecting variables of extraction were extraction temperature range from 70 to 110°C, and solvent to oil
ratio range from 1:1 to 4:1 (wt/wt).
The n-d-M method was used for calculation of carbon distribution and structural group analysis of the raffinate
produced from furfural extraction.
Also the three component phase diagram for a mixed-ba

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of Extraction Temperature and Solvent to Oil Ratio on Viscosity Index of Mixed-medium Lubricating Oil Fraction by Using Solvents Extraction
...Show More Authors

In this study two types of extraction solvents were used to extract the undesirable polyaromatics, the first solvent was furfural which was used today in the Iraqi refineries and the second was NMP (N-methyl-2-pyrrolidone).
The studied effecting variables of extraction are extraction temperature ranged from 70 to 110°C and solvent to oil ratio in the range from 1:1 to 4:1.
The results of this investigation show that the viscosity index of mixed-medium lubricating oil fraction increases with increasing extraction temperature and reaches 107.82 for NMP extraction at extraction temperature 110°C and solvent to oil ratio 4:1, while the viscosity index reaches to 101 for furfural extraction at the same extraction temperature and same

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A Comparative Study of the Influence of Different Types of Polymers on Viscosity Index and Pour Point of Iraqi Base Oils
...Show More Authors

In this study, the effects of blending the un-branched acrylate polymer known as Poly (n-decyl acrylate), and the branched acrylate polymer known as Poly (iso-octyl acrylate), on the viscosity index (VI), and the pour point of the Iraqi base stocks 40, and 60 respectively, were investigated. Toluene was used as a carrier solvent for both polymer types. The improvement level of oils (VI, & pour point) gained by blending the oil with the acrylate derived polymers was compared with the values of (VI, and pour point) gained by blending the oil with a commercial viscosity index, and pour point improver. The commercial lubricant additive was purchased and used by Al-Daura Refineries. It consisted of an un-known olefin copolymer dissolved i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Dec 31 2014
Journal Name
Al-khwarizmi Engineering Journal
Catalytic Cracking of Iraqi Vacuum Gasoil Using Large and Medium Pore Size of Zeolite Catalysts
...Show More Authors

Abstract 

The catalytic cracking conversion of Iraqi vacuum gas oil was studied on large and medium pore size (HY, HX, ZSM-22 and ZSM-11) of zeolite catalysts. These catalysts were prepared locally and used in the present work. The catalytic conversion performed on a continuous fixed-bed laboratory reaction unit. Experiments were performed in the temperature range of 673 to 823K, pressure range of 3 to 15bar, and LHSV range of 0.5-3h-1. The results show that the catalytic conversion of vacuum gas oil increases with increase in reaction temperature and decreases with increase in LHSV. The catalytic activity for the proposed catalysts arranged in the following order:

HY>H

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Vapor Phase Oxidation of Benzoic Acid to Phenol using Nickel-Iron Oxides Catalysts
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Jun 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Catalytic Reduction of Nitric Oxide in Automobile Exhaust Gases
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
Influence of Some Additives on the Efficiency of Viscosity Index Improver for Base Lubricating Oils
...Show More Authors

The effects of three different additives formulations namely Lubrizol 21001, HiTEC 8722B and HiTEC 340 on the efficiency of VII namely OCP of three base lubricating oils namely 40 stock and 60 stock and 150 stock at four temperatures 40, 60, 80 and 100oC were investigated. The efficiency of OCP is decreased when blended with 4 and 8 wt% of Lubrizol 21001 for all the three base oil types. But it is increased when adding 4 wt% and 8 wt% of H-8722B in 40 stock. While for 60 stock and 150 stock the OCP efficiency decreased by adding 4 and 8 wt% of H-8722B. In the other hand, it is decreased with a high percentage by adding 4 and 8 wt% of H-340 for 60 stock and 150 stock and for 40 stock it is increased by adding 4 wt% of H-340 and decreased

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Catalytic Conversion of Glucose into 5-hydroxymethyl furfural over Spent Dry Batteries as Catalysts
...Show More Authors

Biomass is a popular renewable carbon source because it has a lot of potential as a substitute for scarce fossil fuels and has been used to make essential compounds like 5-hydroxymethylfurfural (HMF). One of the main components of biomass, glucose, has been extensively studied as a precursor for the production of HMF. Several efforts have been made to find efficient and repeatable procedures for the synthesis of HMF, a chemical platform used in the manufacturing of fuels and other high-value compounds. Sulfonated graphite (SG) was produced from spent dry batteries and utilized as a catalyst to convert glucose to 5-hydroxymethylfurfural (HMF). Temperature, reaction time, and catalyst loading were the variables studied. When dimethyl sulfo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
View Publication
Crossref