Adsorption is one of the most important technologies for the treatment of polluted water from dyes. Theaim of this study is to use a low-cost adsorbent for this purpose. A novel and economical adsorbent was used to remove methyl violet dye (MV) from aqueous solutions. This adsorbent was prepared from bean peel, which is an agricultural waste. Batch adsorption experiments were conducted to study the ability of the bean peel adsorbent (BPA) to remove the methyl violet (MV) dye. The effects of different variables, such as weight of the adsorbent, pH of the MV solution, initial concentration of MV, contact time and temperature, on the adsorption behaviour were studied. It was found experimentally that the time required to achieve equilibrium was 120 min for all dye concentrations (10-50 mg/l). The BPA was characterised using Fourier transform infrared (FTIR)before and after adsorption of the MV dye. Langmuir, Freundlich and Temkin isotherm models were used to analyse the experimental isotherm data. The Freundlich isotherm gives a better fit than the other isotherm models. The adsorption kinetic data were tested using pseudo-first-order and pseudo–second-order models. Additionally, the intraparticle diffusion model was used to investigate the mechanism of the adsorption process. It was found that boundary layer diffusion (external mass transfer) is the rate-determining step. The thermodynamic parameters, including ΔH, ΔS and ΔG, were investigated at different temperatures (298, 313 and 323 K) and concentrations (5, 10, 20 and 30 mg/l) to understand the nature of the adsorption process. The thermodynamic study indicates that the adsorption of MV dye onto BPA is physical, exothermic and spontaneous in nature.
The purpose of this paper, is to study different iterations algorithms types three_steps called, new iteration,
Imidacloprid is systemic insecticide (1-[(6-chloro-3-pyridinyl) methyl]-N-nitro-2-imidazolidinimine) and the world’s most widely used has significant efficacy against a broad variety of pests and a unique mode of action by using it spreader and irrigation. The persistence of this pesticide in the soil means that it causes environmental damage that must be cleaned up. In this study collected and identified the best bacteria isolate that breakdown imidacloprid from the Plant Protection Director in Baghdad, which has been using neonicotinoid pesticides for years in their own greenhouse for pest control. Using high-performance liquid chromatography HPLC to measuring the residual concentrations of imidacloprid in MSM media at a concentration o
... Show MoreSimple, sensitive and economical spectrophotometric methods have been developed for the determination of cefixime in pure form. This method is based on the reaction of cefixime as n-electron donor with chloranil to give highly colored complex in ethanol which is absorb maximally at 550 nm. Beer's law is obeyed in the concentration ranges 5-250 µg ml-1 with high apparent molar absorptivities of 1.52×103 L.mole-1. cm-1.
Pesticide biodegradation can be accomplished by the technique of bioremediation, which makes use of microorganisms’ ability to degrade pesticide residues. This study aimed to separate and identify imidacloprid-biodegradable from botanical fields soil of greenhouses in the Plant Protection Directorate /Ministry of Agriculture in Baghdad, which has been using imidacloprid pesticides for many years. Using high-performance liquid chromatography, residual imidacloprid concentrations in MSM medium at a concentration of 25 mg/L after 21 days were measured to identify the best degrading bacterial isolates. Isolate No.37 the best bacterial isolate was able to degrade 63% of imidacloprid. was
ِabstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission) was studied and found to be at 772 nm, several process parameters were such as concentration of TiO2 , and the effect of distance from nozzle tip to the grounded collector (gap distance). The result of the lower concentration of, the smaller the diameter of nanofiber is. Increasing the gap distance will affect nanofibers diameter.
Soil stabilization with stone powder is a good solution for the construction of subgrade for road way and railway lines, especially under the platforms and mostly in transition zones between embankments and rigid structures, where the mechanical properties of supporting soils are very influential. Stone powder often has a unique composition which justifies the need for research to study the feasibility of using this stone powder type for ground improvement applications. This paper presents results from a comprehensive laboratory study carried out to investigate the feasibility of using stone powder for improvement of engineering properties of clays.
The stone powder contains bassanite (CaSO4. ½ H
... Show MoreThe inhibitive effect of imidazol on the dissolution of Zn in (1M) HCl has been studied. The inhibion effect of imidazol ,protection efficiency and the corrosion rate of Zn in (1M) HCl were investigated at various concentrations (1x 10-3 – 5x10-3) M and tempearture range (285-328) K. The corrosion inhibitive of Zn by imidazol was studied using weight loss measurement and analytical titration of the amounts of dissolved zinc in acidic solution in presence and absent of imidazol. It was observed that imidazol led to protection efficiency reached to (88.93)% when (10)mM imidazol concentration was used. A linear relationship came true between (C/?) and (C); where (?) is the coverage of Zn surface by imidazol which could be obtained from
... Show MoreWhen laser light incident on biological tissue, it is either reflected from the
surface of the tissue (e.g. the skin) or scattered inside the tissue or absorbed .The laser light will be
absorbed by water, hemoglobin and melanin. Absorption is also highly dependent on wave-length of
laser radiation. The absorbed light is converted into kinetic energy leading to laser effect that when
appropriately applied can produce reaction ranging from incision, vaporization to coagulation. Aim of
the study: To evaluate the efficiency of diode Laser 810 ± 20nm in treatment of oral lesions. Methods:
6 patients (2 females and 4 males) with different oral lesions were treated in the hospital of specialized
surgeries by the use of dio
In the present study the performance of drying process of dffirent solid materials by batch fluidized bed drying
under vacuum conditions was investigated. Three, different solid materials, namely; ion exchange resin-8528,
aspirin and paracetamol were used. The behavior of the drying curves as well as the rate of drying of these
materials had been studied. The experiments were caried out in a 0.0381 m column diameter fluidized by hot
air under yacuum conditions. Four variables affecting on the rate of drying were studied' these variables are
vacuum pressure (100 - 500 mm Hg), air temperature (303-323 K), particle size (0.3-0.8 mm) and initial
moisture content (0.35-0.55 g/g solid)-for resin and (0.1-0.2 g/g soltid) for a
