Mortar of ordinary Portland cement was blended with cockles shell
powder at different weight ratios to investigate the effect of powder
admixture on their strength and thermal conductivity. Results showed
that addition of cockles shell powder at 50% of mortar weight
improves hardness and compressive strength notably and reduces the
thermal conductivity of the end product. Results suggest the
possibility to incorporate cockles shell powders as constituents in
cement mortars for construction and plastering applications.
This study investigates the possibility of using waste plastic as one of the components of expired lead-acid batteries to produce lightweight concrete. Different percentages of lead-acid battery plastic were used in the production of lightweight concrete. The replacements were (70, 80 and 100%) by volume of the fine and coarse aggregate. Results demonstrated that a reduction of approximately 23.6% to 35% in the wet density was observed when replacement of 70% to 100% of the natural aggregate by lead-acid battery plastic. Also, the compressive strength decreased slightly with the increase in plastic content at different curing ages of 7, 28, 60, 90, 120 days. The lowest value of compressive strength was (20.7 MPa) for (wa
... Show MoreNon-thermal (low-temperature) plasma may act as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. In this paper an atmospheric pressure plasma needle jet device which generates a cold plasma jet is used to measure the effectiveness of plasma treatment against different pathogenic bacteria and to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma. It is found that, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, there were no survivors among the initial 1x108C.F.U (Co
... Show MoreUniversities are among spaces where it's important to ensure thermal comfort in indoor spaces, improving the occupants' well-being and productivity. The problem of the research was to study appropriate glazing systems for the spaces of the University of Baghdad because glazing systems are one of the most important elements of the indoor environments, and it has a major impact on the thermal performance of buildings. Glass is one of the most seasoned materials that are most utilized in the design. Since it is a diaphanous material, it allows sunlight to enter the building, increasing the space's temperature, cooling loads, and energy consumption in summer. The research followed the experimental method by studying and
... Show MoreIn this research ,Undoped Nio and 1%Li doped Nio thin films were deposited utilizing chemical spray pyrolysis on the glass substrates heated (450C). The effects of non-thermal plasma on the structural and optical properties were studied. XRD measurement shows that Nio and Nio:1%Li films were found to be polycrystalline and have cubic structure with a preferred orientation (111). Decreased crystal size after exposure especially at (7) sec. AFM data indicate that the surface roughness average and (RMS) values of the prepared doped films are increasing after exposure to plasma, the transmittance increases after doped samples exposure to plasma, it was found that the energy gap value decreased when doped samples exposure to plasma, also, thickn
... Show MoreThe work was carried out in two stages. The first stage concerned
with study of silicon carbide (SiC) ratio (1.5, 2.5, 3.5, and 4.5 wt%)
effect on the Thermal conductivity of polyvinyl chloride (PVC); and
the second stage concerned with the UV – weatherizing (25, 50, and
75 hr), thermal aging (40, 50, and 60 °C), and rain- weatherizing (1,
2.5, and 4 hr) effect on the samples involved. Thermal conductivity
results proved that there was slight increase in thermal conductivity
by (SiC) loading; it increased from 0.17 W/m.K for PVC to 0.19
W/m.K for 4.5% SiC/PVC; where as it was systematically decreased
by UV- weatherizing, thermal aging, and rain- weatherizing. This
property is in a good agreement with gene