The surplus glycerol produced from biodiesel production process as a by-product with high quantity can be considered as a good source to prepare glycerol carbonate (GC) whereas with each 1000 kg from biodiesel obtains 100 kg from glycerol. Glycerol converted to glycerol carbonate over bio-char as a catalyst prepared by slow pyrolysis process under various temperatures from 400 ᴼC to 800 ᴼC. The char prepared at 700 ᴼC considered as a best one between the others which was manufactured to activate the transesterification reaction. GC have large scale of uses such as liquid membrane in gas separation, surfactants ,detergents , blowing agent , in plastics industry, in Pharmaceutical industry and electrolytes in lithium batteries. Yield percent of GC is 9.3% without catalyze the reaction with char whereas in case of bio-char used the GC yield increases to 67.80%. When the catalyst modified with 3 molar concentration of sodium hydroxide, the yield of glycerol carbonate obtained 98.3% and complete conversion. All the reaction in this study performed under conditions 60ᴼC, 90 min, 3:1 DMC:G and 3%wt. catalyst loading.
The heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units.
Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) an
... Show MoreBackground: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and me
... Show MoreIn this work, the design and implementation of a smart energy metering system has been developed. This system consists of two parts: billing center and a set of distributed smart energy meters. The function of smart energy meter is measuring and calculating the cost of consumed energy according to a multi-tariff scheme. This can be effectively solving the problem of stressing the electrical grid and rising consumer awareness. Moreover, smart energy meter decreases technical losses by improving power factor. The function of the billing center is to issue a consumer bill and contributes in locating the irregularities on the electrical grid (non-technical losses). Moreover, it sends the switch off command in case of the consumer bill is not
... Show MoreSecured multimedia data has grown in importance over the last few decades to safeguard multimedia content from unwanted users. Generally speaking, a number of methods have been employed to hide important visual data from eavesdroppers, one of which is chaotic encryption. This review article will examine chaotic encryption methods currently in use, highlighting their benefits and drawbacks in terms of their applicability for picture security.
Abstract Background: One of the most important methods to replace lost teeth is dental implants. In order to increase the strength of connection of the implant with the jaw bone to provide early loading after placement, implant is coated by different coating materials that achieved that purpose. The aim of this study was to evaluate the influence of coating CP Ti implant with calcium carbonate on the strength of bone-implant interface after two and six weeks of implantation in rabbit femur bone by torque removal test, histological and histomorphometric analysis. Materials and methods: Coating the surface of commercially pure titanium screws with extra pure synthetic calcium carbonate via electrophoretic deposition method (EPD) was done. The
... Show MoreA field-pilot scale slow sand filter (SSF) was constructed at Al-Rustamiya Sewage Treatment Plant (STP) in Baghdad city to investigate the removal efficiency in terms of Biochemical Oxygen Demand (BOD5), Chemical oxygen demand (COD), Total Suspended Solids (TSS) and Chloride concentrations for achieving better secondary effluent quality from this treatment plant. The SSF was designed at a 0.2 m/h filtration rate with filter area 1 m2 and total filter depth of 2.3 m. A filter sand media 0.35 mm in size and 1 m depth was supported by 0.2 m layer of gravel of size 5 mm. The secondary effluent from Al-Rustamiya STP was used as the influent to the slow sand filter. The results showed that the removal of BOD5, COD, TSS, and Chloride were
... Show MoreThis study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The bet
... Show MoreThis study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity.
Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed
... Show More