In this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l) contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial concentration. The removal efficiency of cadmium ion was predicted through 11 neurons hidden layer, with a correlation coefficient of 0.9997 between ANN outputs and the experimental data and through sensitivity analysis, pH was found to be most significant parameter (25.13 %).The kinetic flotation order for cadmium ions almost first order and the removal rate constant (k) increases with decreasing the initial metal concentration.
Corrosion rate tests were carried out on carbon steel under concentration cells conditions of oxygen and sodium chloride. The effect of aeration in one compartment on the corrosion rate of both coupled metals was determined. In addition, the effects of time and temperatures on the corrosion rate of both coupled metals and galvanic currents between them were investigated. Corrosion potentials for the whole range of operating conditions under concentration cell conditions were also studied. The results showed that under aeration condition, the formation of concentration cell caused a considerable corrosion rate of the Carbon steel specimens coupled in different concentrations of O2 and NaCl due to the galvanic effect
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreThe densities and visconsities of solutions of poly(vinyl alcohol)(PVA) molccuar weight (14)kg.mol-1in water up to 0.035%mol.kg-1
In this paper, the effect size measures was discussed, which are useful in many estimation processes for direct effect and its relation with indirect and total effects. In addition, an algorithm to calculate the suggested measure of effect size was suggested that represent the ratio of direct effect to the effect of the estimated parameter using the Regression equation of the dependent variable on the mediator variable without using the independent variable in the model. Where this an algorithm clear the possibility to use this regression equation in Mediation Analysis, where usually used the Mediator and independent variable together when the dependent variable regresses on them. Also this an algorithm to show how effect of the
... Show MoreSteganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreUsing a mathematical model to simulate the interaction between prey and predator was suggested and researched. It was believed that the model would entail predator cannibalism and constant refuge in the predator population, while the prey population would experience predation fear and need for a predator-dependent refuge. This study aimed to examine the proposed model's long-term behavior and explore the effects of the model's key parameters. The model's solution was demonstrated to be limited and positive. All potential equilibrium points' existence and stability were tested. When possible, the appropriate Lyapunov function was utilized to demonstrate the equilibrium points' overall stability. The system's persistence requirements were spe
... Show MoreHome Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad
... Show MoreThe object of this research is to determine the effect in the differences of the correlation pattern of the micro blogging on the educational attainment of computer science curriculum for 12th grade students. I will try to test the best suited correlation and I might use the demo curriculum as well to achieve its objectives , The research method that will be used in this research is the quantitative method where we will use a sample of 60 students divided into two groups ( correlate the micro blogging - adopted the sequence pattern of relating the micro blogging) As a result, we found out that there are quantitative differences among the two groups' median , The differences goes back to the main effect of the correlation pattern of the m
... Show More