The exploitation of obsolete recyclable resources including paper waste has the advantages of saving resources and environment protection. This study has been conducted to study utilizing paper waste to adsorb phenol which is one of the harmful organic compound byproducts deposited in the environment. The influence of different agitation methods, pH of the solution (3-11), initial phenol concentration (30-120ppm), adsorbent dose (0.5-2.5 g) and contact time (30-150 min) were studied. The highest phenol removal efficiency obtained was 86% with an adsorption capacity of 5.1 mg /g at optimization conditions (pH of 9, initial phenol concentration of 30 mg/L, an adsorbent dose of 2 g and contact time of 120min and at room temperature). The well-known Langmuir and Freundlich adsorption models were studied. The results show that the equilibrium data fitted to the Freundlich model with R2=0.9897 within the concentration range studied. The main objective of this study is finding the best mixing and conditions for phenol removal by adsorption via paper waste.
The researcher seeks to get scientific facts through knowing the relationship between the priorities of Yemeni audience in follow-up paper daily newspapers compared to surfing publics the online journalism sites and the nature of information obtained from online journalism sites and printed paper newspapers and the impact of the daily newspapers in the priority of issues and political events among a sample of a group of Yemeni readers in order to identify the extent to keep up the paper daily newspapers of the development in the field of online journalism and the extent of reading paper newspapers under the intense competition by online journalism sites, and are paper newspapers able to keep pace with the actual developments provided by
... Show MoreIn this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel
... Show MoreThis work was conducted to determine the volumetric mass transfer coefficient (Ky.a) infixed bed adsorption using hexane-benzene mixture by adsorption onto a fixed bed of white silica gel. Benzene concentration was measured by gas chromatography. The effect of feed flow rate and initial concentration of benzene in hexane-benzene mixture on the volumetric mass transfer coefficient and on the adsorption capacity of silica gel was investigated.
In general, the volumetric mass transfer coefficient increases with increasing hexane flow rate, and with increasing initial concentration of benzene in the mixture. The ultimate value of (Ky.a) was at 53 ml/min of hexane flow rate with benzene initial concentration of (6.53 wt. %), and it wa
... Show MoreAqueous Two Phase System (ATPS) or liquid-liquid extraction is used in biotechnology to recover valuable compounds from raw sources. In Aqueous Two-Phase Systems, many factors influence the Partition coefficient, K, (which is the ratio of protein concentration in the top phase to that in the bottom phase) and the Recovery percentage (Rec%). In this research, two systems of ATPS were used: first, polyethylene glycol (PEG) 4000/Sodium citrate (SC), and the second, PEG8000/ Sodium phosphate (SPH), for the extraction of Bovine Serum Albumin (BSA). The behavior of Rec% and K of pure (BSA) in ATPS has been investigated throughout the study by the effects of five parameters: temperature, concentration of polyethylene glycol (P
... Show MorePlatinum nanoparticles (PtNPs) exhibit promising biomedical properties, but concerns about biocompatibility and synthesis-related toxicity remain. This study aimed to develop eco-friendly PtNPs using aqueous broccoli extract as a natural reducing and stabilizing agent, and to assess their multifunctional biomedical potential. PtNPs were synthesized through sonochemical reduction of K₂PtCl₆ in broccoli extract, followed by purification and comprehensive physicochemical characterization. UV–Vis confirmed nanoparticle formation at 253 nm, while XRD and FTIR analyses verified the crystalline FCC structure and phytochemical capping. TEM revealed mainly spherical PtNPs with an average core size of 14.83 ± 7.67 nm. Conversely, DLS showe
... Show MoreThis paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ΔG, ΔH, and ΔS thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated.
Intrinsic viscosities have been studied for polyethylene oxide in water which has wide industrial applications. The polyethylene oxide samples had two different structures, the first one was linear and covers a wide range of molecular weight of 1, 3, 10, 20, 35, 99, 370, 1100, 4600, and 8000 kg/mol and the second one was branched and had molecular weights of 0.55 and 40 kg/mol.
Intrinsic viscosities and Huggins constants have been determined for all types and molecular weights mentioned above at 25ºC using a capillary viscometer. The values of Mark-Houwink parameters (K and a) were equal to 0.0068 ml/g and 0.67 respectively, and have not been published for this range of molecular weight in as yet.
The direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245 V) versus Ag/AgCl in 0.1 M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1 Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47 s-1. The electrode was used as a hydrogen peroxide biosensor with a linear response over 3 to 240 µM and a detection li
... Show MoreChromium tanned leather wastes (CTLW) and vegetable tanned leather wastes (VTLW) were used as adsorbent materials to remove the Biebrich scarlet dye (BS), as an anionic dye from wastewater, using an adsorption method. The effects of various factors, such as weight of leather waste, time of shaking, and the starting concentration of Biebrich scarlet dye, temperature and pH were studied. It described the adsorption process using Langmuir and Freundlich isotherm models. The obtained results agreed well with the Langmuir model, and the maximum adsorption capacities of CTLW and VTLW were 73.5294 and 78.1250 mg.g⁻¹, respectively, suggesting a monolayer adsorption process. The adsorption kinetic was found to follow a pseudo-second-order kinetic
... Show More