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Modeling real-life scenarios as differential equation models have displayed numerous advantages as the
model is able to infuse more realistic features of the scenario under consideration. Adopting a differential
equation flow model to estimate server utilization rate in queuing systems has not attracted much atten-
tion due to the challenges to obtain an exact solution to the model. However, this concern is bypassed by
adopting approximate methods. Thus, this article adopts a first order differential equation model to cal-
culate the rate at which work arrives and the capacity of workstation. The values were obtained as the
independent variable becomes large, which expresses the values of the utilization of resources which
is now infused into conventional queuing expressions to obtain the required information about the queu-
ing systems. A new novel and convergent one-step second-derivative method is developed in this article
to obtain the required value of the server utilization rate.
� 2019 THE AUTHOR. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Queues are evident in our day-to-day activities, such as, in basic
operations like making payment at the checkout counter of a
supermarket or bank [1,2]. Several studies to date have explored
various areas where a queueing problem can exist or where a wait-
ing line is expected to occur. Some of these fields include analyzing
hospital patients during peak congestion [3,4], adoption of the
queueing concept in emergency departments [5], supply and
demand through logistical loading operations [6,7], amongst
others.

In every queuing system, there are certain inputs required to
describe or define the queue. These inputs include the basic vari-
ables which are arrival rate, service rate and the number of servers.
Although, depending on the situation, other inputs may be
required to describe the extent of variability in arrivals and service.
These input variables are fundamental in any queuing system in
order to obtain certain required outputs which vary from informa-
tion about the waiting line itself or the queuing system as a whole.
Specifically, the first output that is required to be computed in a
queuing system is the utilization of resource. This is equal to the
ratio of the rate at which work arrives and the capacity of the sta-
tion. From this value, other outputs such as the average number in
the waiting line, the average waiting time in the waiting line, aver-
age time spent in the queuing system, and the average number in
the queuing system can be obtained with adoption of conventional
rules such as Little’s law [8].

Various studies have considered obtaining the outputs of a
queuing model with specific variations unique to the system being
considered. Such research includes but not limited to the follow-
ing; estimation and interpretation of the waiting time for cus-
tomers arriving to a non-stationary queueing system by [9],
minimisation of the average passenger waiting time in personal
rapid transit systems [10], develop a new mathematical model to
construct membership functions of the fuzzy single channel
queueing model [11], analysing congestion at vessel terminals by
determining the number of berths that minimize total cost, includ-
ing waiting time cost and berth’s construction costs [12], and opti-
mizing the execution time while minimizing average waiting time
in cloud computing environment using queuing model [13]. Other
recent studies include [14–18]. As extensive as the research to
obtain these queuing parameter outputs, the adoption of differen-
tial equation models is quite scarce due to the constraint of the
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rigorous process involved to obtain the exact solution of differen-
tial equations or even its non-existence in certain cases.

Approximate solutions have been introduced and widely
adopted to solve differential equation models and the specific first
order ordinary differential equation (ODE) model in this article is
not an exemption. Related studies that have considered approxi-
mate solutions to first order ODEs include Dhage [19] whose study
approximated solutions of nonlinear first order ODEs, Mall and
Chakraverty [20] with the application of Legendre neural network,
and Omar and Adeyeye [21] who presented a numerical solution of
first order ODEs using block method. Other studies concerned with
approximate solution of first order ODEs include [22–25], among
other studies. In their various investigations, these authors have
explored obtaining approximate solutions to the first order models,
but little or no investigation exists with respect to utilizing these
differential equation models in queuing systems.

Hence, the rest of this paper has organized the introduction of a
differential equation model, the development of a new approxi-
mate method to obtain its solution, the utilization of the obtained
solution to estimate the server utilization rates in queuing models
and further calculate the basic outputs of the queuing system. The
article introduces the differential equation flow model in the next
section, with details of the developed method and its properties in
Section 3. Section 4 discusses the implementation of the method
while its application to queuing models is displayed in Section 5.
The article is concluded in Section 6.

2. Differential equation flow model

Various processing scenarios can be depicted by a set of flow
diagrams that displays the order in which the processing progres-
sion follows. A sample flow diagram as seen in the early work of
Vandergraft [26] is shown in the following figure where the links
between the boxes describe the flow of information from one
box to the other.

The flow through a network of queues can be interpreted in
terms of fluid flow and thus modeled as a set of differential equa-
tions. It has been grounded that the applicability of such modeling
approach is seen to be suitable for describing flow of work. To
derive the equations to define this flow, a system of ordinary differ-
ential equations is presented to approximate the flow graph in
Fig. 1.

Given nodes n ¼ 1;2;3; ::: as shown in Fig. 1, at time t, let snðtÞ,
xnðtÞ, and nnðtÞ denote the number of tasks, incremental arrivals,
and the average number of hours to process one item, respectively.
The flow of work is defined approximately by the set of first order
differential equations,

_snðtÞ ¼ _cnðtÞ þ
X
i

ainn
�1
i ðtÞ � n�1

n ðtÞ; n ¼ 1;2; ::: ð1Þ
Fig. 1. Conventional fl
The initial condition can be imposed at snð0Þ ¼ 0 such that there
are no tasks at the beginning of the workflow, with cnðtÞ ¼ 0 for
most nodes n, asides node 1 where c1ðtÞ is an increasing function
of t. Note that the summation in Eq. (1) is over all nodes that feed
into node n, and ain is the ration of the flow out of node i that goes
to node n as shown in Fig. 1. Since niðtÞ denotes the time to process
one item at node i, thus n�1

i ðtÞ is the rate at which the items are
processed. Moreover, the case of n�1

i ðtÞ being undefined does not
appear as a problem as niðtÞ > 0. However, the challenge arises in
finding an approximation to _cnðtÞ which requires a rearrangement
of Eq. (1) as

_znðtÞ ¼
X
i

ainn
�1
i ðtÞ � n�1

n ðtÞ ð2Þ

where znðtÞ ¼ snðtÞ � cnðtÞ, which makes the expression in Eq. (2)
solvable by any suitable approximate approach such as the method
introduced in this article.

3. Development of method and properties

The approximate method proposed for the solution of the flow
model is derived using the newly introduced linear block approach
by Adeyeye and Omar [27]. To obtain the proposed method, con-
sider the reduced model in Eq. (2) for the linear block method form
expressed as

wgþx ¼
Xm�1

j¼0

ðxhÞj
j!

wðjÞ
g þ

Xk

j¼0

/xjf gþj þuxjggþj

� �
; x ¼ 1;2; . . . ; k; ð3Þ

wherem is the order of the differential equation flowmodel, x is the
step number of the approximate method, f gþj ¼ f ðtgþj;wgþjÞ, and

gnþj ¼ df ðtgþj ;wgþjÞ
dt . Specifically, for suitable comparison with other

one-step methods which are the conventional approaches for solv-
ing equations of the form of Equation (2), x is also chosen to be 1.
Substituting the values of m and x transforms Equation (3) to the
form

wgþ1 ¼ wg þ /10f g þ /11f gþ1 þu10gg þu11ggþ1 ð4Þ
Still following the steps from the algorithm of the linear block

approach, the unknown coefficients in Eq. (4) are obtained from

/10

/11
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2
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3
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�1 h

h2
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h=2

h2
=12

h2
=12

2
66664

3
77775

ð5Þ

which presents the proposed approximate method for the flow
model to be
ow diagram [26].
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wgþ1 ¼ wg þ h=2 f g þ f gþ1

� �
þ h2

=12 gg � ggþ1

� �
: ð6Þ

The developed method in the equation preceding is coined a
one-step second-derivative method. A basic property that is
demanded of an acceptable linear multistep method, such as the
proposed method in Eq. (6), is the property of convergence. The
developed method is said to be a convergent linear multistep
method, if the solution wg generated by the method, converges to
the theoretical solution w tð Þ, as the Dt ! 0. Thus, the following the-
orem is considered.

Theorem 3.1 (Dahlquist Equivalence Theorem). A linear multistep
method is convergent if and only if it is consistent and zero-stable.

The definitions of the hypotheses in Theorem 3.1 is as given.

Definition 3.1 (Consistency). A linear multistep method is said to
be consistent if it has order p P 1.
Definition 3.2 (0-stability). A linear multistep method is said to be
0-stable if no root of the first characteristic polynomial has modu-
lus greater than one, and if every root with modulus one is simple.

To imply the acceptability of the developed method in Eq. (6)
with respect to its convergence property, the following proposi-
tions are stated.

Proposition 3.1 (Convergence of a one-step second-derivative
method). A linear multistep method of the form wgþ1 ¼ wgþ
h=2 f g þ f gþ1

� �
þ h2=12 gg � ggþ1

� �
is consistent and 0-stable, hence

convergent.
Proof. Considering the first premise of the proposition, it is
required to show that the developed method is consistent with
respect to Definition 3.1. Following the approach in Lambert [28],
associate the linear difference operator I with the developed
method, such that h ¼ Dt and

I w tð Þ;Dt½ � ¼ �w tg
� �þ w tg þ Dt

� �� Dt=2 w0 tg
� �þ w0 tg þ Dt

� �� �

� Dtð Þ2=12 w00 tg
� �� w00 tg þ Dt

� �� �
:

ð7Þ
Expanding w tg þ Dt

� �
and its derivatives, w0 tg þ Dt

� �
and

w00 tg þ Dt
� �

as Taylor series about tg gives

I w tð Þ;Dt½ � ¼�w tg
� ��Dt

2 w0 tg
� �� �

þ w tg
� �þDtw0 tg

� �þ Dtð Þ2
2! w00 tg

� �þ Dtð Þ3
3! w000 tg

� �þ Dtð Þ4
4! wð4Þ tg

� �þ Dtð Þ5
5! wð5Þ tg

� �þ :::
h i

�Dt
2 w0 tg

� �þDtw00 tg
� �þ Dtð Þ2

2! w000 tg
� �þ Dtð Þ3

3! wð4Þ tg
� �þ Dtð Þ4

4! wð5Þ tg
� �þ :::

h i

� Dtð Þ2
12 w00 tg

� �� �þ Dtð Þ2
12 w00 tg

� �þDtw000 tg
� �þ Dtð Þ2

2! wð4Þ tg
� �þ Dtð Þ3

3! wð5Þ tg
� �þ :::

h i
:

ð8Þ
Collecting terms in Eq. (8) simplifies the expression to

I w tð Þ;Dt½ � ¼ Dtð Þ5
720

wð5Þ tg
� �

; ð9Þ

where the coefficient of Dtð Þ5wð5Þ tg
� �

is the error constant, and the
order of the method p ¼ m� 1 where m is the number of the high-
est derivative in Equation (9). Thus p ¼ 4 and hence the developed
method is consistent.

Considering the second premise in the proposition with respect
to Definition 3.2, the first characteristic polynomial takes the form
qðfÞ ¼ f� 1 with principal root f ¼ 1. Since the method has no root
of the first characteristic polynomial with modulus greater than
one with the root being simple. Hence, the developed method is
said to be 0-stable.
On satisfying both hypotheses, it is concluded that a linear mul-

tistep method of the form wgþ1 ¼ wg þ h=2 f g þ f gþ1

� �
þ

h2
=12 gg � ggþ1

� �
is convergent. h
4. Implementation of the method

The flow model is specifically considered under the condition
where the flow graph consists of one workstation with constant
arrival of k ¼ _cðtÞ items per hour, a processing time of s hours
per item per person and w workers assigned to the station. The dif-
ferential equation model then takes the form

_s tð Þ ¼ k�w
s
; s 0ð Þ ¼ 0: ð10Þ

Considering a case where many workers are available to be
assigned at the workstation, then the number of workers assigned
is equivalent to the number of work items per time. Hence, the dif-
ferential in Eq. (10) becomes

_s tð Þ ¼ k� s
s
; s 0ð Þ ¼ 0 ð11Þ

with exact solution

sðtÞ ¼ ks� kse�
t
s ð12Þ

The differential equation in Eq. (11) is considered a stiff differ-
ential equation because its exact solution in Eq. (12) has a term of
the form e�ct , where c is a large positive constant. This implies that
when the processing time in hours per item per person becomes
very small, then it is seen that c becomes large. However, the
developed method will adequately solve the flow differential equa-
tion model by choosing the step size to be small in order to avoid
the solution being numerically unstable. Details of comparison of
the developed method in this article to other existing approaches
will be displayed in the next section.

It is known that s approximates the ratio of the rate at which
work arrives and the workstation capacity. This implies that as t
becomes large (t ! 1), s tends towards the value that expresses
the utilization of resources (q). Specifically, in analyzing any queu-
ing system, one is basically interested in obtaining the values for
the number of work items waiting to be attended to, and the time
that an average customer waits before being attended to. One may
also be keen to knowmore details about the whole queuing system
by considering the time the customer spends in the system, and
the number of customers in the system. Since the scenario under
consideration in this model is that of a single workstation, one
can easily obtain the number of work items waiting to be attended
to in the system, denoted Lq as [29]

Lq ¼ q2

1� q
; ð13Þ

while Little’s law [8] provides the expression to obtain the time that
an average customer waits before being attended to, which is
denoted Wq and defined as

Wq ¼ Lq
k
: ð14Þ

The time the customer spends in the system and the number of
customers in the system, are denoted Ws and Ls respectively. The
former is obtained by adding Wq to the service time, while the lat-
ter can be obtained using another application of Little’s law as
Ls ¼ kWs.
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5. Application of developed method to queuing models

In this section, the developed method will be used to estimate
the server utilization rate in various single server queuing model
scenarios. The accuracy will be compared to both the exact solu-
tion and other methods, before implementing the method to ana-
lyze the required parameters of the queuing models. It is assumed
in the problems considered that models assume a certain type of
variability; Poisson distribution for number of arrivals and expo-
nential distribution for service times.

Problem 1: Consider a bank’s ATM with a single machine,
where customers arrive at the rate of one every other minute
and each customer spends an average of 90 s completing his/her
transactions.

The differential equation model in Eq. (11) is solved using the
developed method in Eq. (6) to estimate q for Problem 1 using
parameters k ¼ 0:5=min and s ¼ 9=6. The obtained solutions in
comparison to the exact solution in Eq. (12) as t ! 1 is given in
Table 1.

From Table 1, as t ! 1, s � 0:7490 ¼ qwhich implies the value
of the ATM machine utilization rate. The other parameters are
obtained as
Table 1
Exact Solution and Absolute Error (AE) for Solving Problem 1.

t Exact Solution AE Dt ¼ 1
2

� �
AE Dt ¼ 1

4

� �

1 0.3649371607 2.388333e�03 1.778817e�03
2 0.5523021464 2.460027e�03 1.830769e�03
3 0.6484985376 1.900412e�03 1.413181e�03
4 0.6978874115 1.304981e�03 9.696400e�04
5 0.7232445050 8.401049e�04 6.237279e�04
6 0.7362632708 5.192009e�04 3.851694e�04
7 0.7429473281 3.119638e�04 2.312463e�04
8 0.7463790375 1.836198e�04 1.360015e�04
9 0.7481409359 1.063890e�04 7.873609e�05
10 0.7490455246 6.088083e�05 4.502044e�05

Table 2
Exact Solution and Absolute Error (AE) for Solving Problem 2.

t Exact Solution AE Dt ¼ 1
2

� �
AE Dt ¼ 1

4

� �

1 0.4999773000 6.046879e�02 1.599674e�02
2 0.4999999989 7.318441e�03 5.132439e�04
3 0.5000000000 8.854069e�04 1.644379e�05
4 0.5000000000 1.071192e�04 5.268408e�07
5 0.5000000000 1.295960e�05 1.687939e�08
6 0.5000000000 1.567891e�06 5.407967e�10
7 0.5000000000 1.896881e�07 1.732647e�11
8 0.5000000000 2.294903e�08 5.550560e�13
9 0.5000000000 2.776443e�09 1.776357e�14
10 0.5000000000 3.359024e�10 5.551115e�16

Table 3
Exact Solution and Absolute Error (AE) for Solving Problem 3.

t Exact Solution AE Dt ¼ 1
2

� �
AE Dt ¼ 1

4

� �

1 0.2500000000 1.378226e�01 7.732905e�02
2 0.2500000000 7.598025e�02 2.391913e�02
3 0.2500000000 4.188718e�02 7.398573e�03
4 0.2500000000 2.309200e�02 2.288499e�03
5 0.2500000000 1.273039e�02 7.078697e�04
6 0.2500000000 7.018143e�03 2.189556e�04
7 0.2500000000 3.869034e�03 6.772650e�05
8 0.2500000000 2.132961e�03 2.094890e�05
9 0.2500000000 1.175881e�03 6.479835e�06
10 0.2500000000 6.482517e�04 2.004318e�06
Lq ¼ 0:74902
1�0:7490 ¼ 2:2350637450. The average number in line to use

the ATM is approximately 2 customers.

Wq ¼ Lq
k ¼ 2:2350637450

0:5 ¼ 4:47012749. The average waiting time
for each customer is approximately 4.5 min.
Ws ¼ 4:5þ 1:5 ¼ 6. The average waiting time-in-system is
6 min.
Ls ¼ 0:5ð6Þ ¼ 3. The average number of customers in the system
are 3 customers.

Problem 2: Consider a queue with a single server, the arrival
rates of 5 per hour and service rates are 10 per hour.

The parameters to estimate q for Problem 2 are k ¼ 5=h and
s ¼ 1=10. The obtained solutions in comparison to the exact solu-
tion as t ! 1 is given in Table 2.

From Table 2, as t ! 1, s ¼ 0:5 ¼ q which implies the value of
the server utilization rate. The other parameters are obtained as

Lq ¼ 0:52
1�0:5 ¼ 0:5.

Wq ¼ Lq
k ¼ 0:5

5 ¼ 0:1. The average waiting time for each customer
is approximately 6 min.
AE Dt ¼ 1
6

� �
AE Dt ¼ 1

8

� �
AE Dt ¼ 1

10

� �

1.317400e�03 1.037719e�03 8.541191e�04
1.355065e�03 1.067002e�03 8.780114e�04
1.045357e�03 8.228330e�04 6.769293e�04
7.168310e�04 5.640351e�04 4.639104e�04
4.608299e�04 3.624700e�04 2.980550e�04
2.844043e�04 2.236194e�04 1.838358e�04
1.706466e�04 1.341259e�04 1.102375e�04
1.003009e�04 7.880639e�05 6.475515e�05
5.803273e�05 4.557964e�05 3.744379e�05
3.316244e�05 2.603668e�05 2.138407e�05

AE Dt ¼ 1
6

� �
AE Dt ¼ 1

8

� �
AE Dt ¼ 1

10

� �

6.306521e�03 3.149507e�03 1.833349e�03
8.011704e�05 2.012477e�05 6.888808e�06
1.014170e�06 1.276864e�07 2.557571e�08
1.283781e�08 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00

AE Dt ¼ 1
6

� �
AE Dt ¼ 1

8

� �
AE Dt ¼ 1

10

� �

4.412358e�02 2.558516e�02 1.506595e�02
7.787563e�03 2.618402e�03 9.079311e�04
1.374461e�03 2.679690e�04 5.471537e�05
2.425845e�04 2.742412e�05 3.297355e�06
4.281480e�05 2.806602e�06 1.987111e�07
7.556570e�06 2.872295e�07 1.197509e�08
1.333692e�06 2.939526e�08 0.000000e+00
2.353890e�07 3.008330e�09 0.000000e+00
4.154483e�08 0.000000e+00 0.000000e+00
7.332428e�09 0.000000e+00 0.000000e+00
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Ws ¼ 6þ 6 ¼ 12. The average waiting time in the system is
12 min.
Ls ¼ 5ð0:2Þ ¼ 1. The average number of customers in the system
is 1 customer.

Problem 3: Consider a single server queue system for which
customers arrive at a rate of 10 per hour and the average process-
ing time is 1.5 min.

The parameters to estimate q for Problem 3 are k ¼ 10 and
s ¼ 0:025. The obtained solutions in comparison to the exact solu-
tion as t ! 1 is given in Table 3.

From Table 3, as t ! 1, s ¼ 0:25 ¼ qwhich implies the value of
the server utilization rate. The other parameters are obtained as

Lq ¼ 0:252
1�0:25 ¼ 1

12 :

Wq ¼ Lq
k ¼ 1=12

10 ¼ 1
120 :

Ws ¼ 1
120 þ 1:5

60 ¼ 1
30 :

Ls ¼ 10 1
30

� � ¼ 1
3 :

6. Conclusion

This article has considered a new approach of adopting a differ-
ential equation model to estimate the server utilization rate, in
order to obtain relevant queuing parameters in single server queu-
ing models. For the specific case of the model being utilized for sin-
gle workstations or servers, the expression transformed to a stiff
differential equation whose solution is usually unstable in cases
of large step sizes, hence the reason to adopt the developed
method with adequate stepsize choices. The step sizes were chosen
to display the convergence property of the developed method in
terms of its closeness in accuracy to the exact solution as the step-
size tends to zero. From the considered problems, the developed
method accurately converged to the required value of the server
utilization rate and then conventional expressions from Little’s
law were adopted to obtain the required queuing parameters.
The article achieves its main objective of presenting a new insight
into the estimation of the server utilization rate. It has additionally
developed a new approximate approach coined the one-step
second-derivative method for approximating models in the form
of first-order ordinary differential equations. Therefore, subse-
quent research aims to extend the model to the solution for
multiple-server queues and also apply the one-step second-
derivative method to models in other fields outside queuing
theory.
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