The current study was to examine the reliability and effectiveness of using most abundant, inexpensive waste in the form of scrap raw zero valent aluminum ZVAI and zero valent iron ZVI for the capture, retard, and removal of one of the most serious and hazardous heavy metals cadmium dissolved in water. Batch tests were conducted to examine contact time (0-250) min, sorbent dose (0.25-1 g ZVAI/100 mL and 2-8 g ZVI/100 mL), initial pH (3-6), pollutant concentration of 50mg/L initially, and speed of agitation (0-250) rpm . Maximum contaminant removal efficiency corresponding to (90 %) for cadmium at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained. Langmuir and Freundlich isotherms were presumed to fit the batch kinetics data for the sorption of Cd(II) onto ZVAI and/or ZVI and found that Langmuir (I) was the most representative model type with coefficient of determination R2 greater than 0.9115. Kinetics data for the sorption of Cd(II) onto ZVAI/ZVI mixture and due to the good agreement between the fitted and the experimental results; the data was found to obey the pseudo second order model. The scanning electron microscopy (SEM) for the ZVI and ZVAI was conducted before and after the sorbent-liquid reaction and revealed distinct morphological changes in the sorbent surface due to the contaminant saturation and pore channel blockages that ceased the sorption process.
Accurate and simple techniques for measurement of fluid rheological properties are important for field operations in the oil industry. Marsh Funnels are popular quality-control tools used in the field for drilling fluids and they offer a simple, practical alternative to viscosity measurement. In the normal measurements, a single point (drainage time) is used to determine an average viscosity; little additional information is extracted regarding the non-Newtonian behavior of the fluid.
Here, a new model is developed and used to determine the rheological properties of drilling muds and other non-Newtonian fluids using data of fluid density and drainage time collected from a Marsh Funnel as a function of viscosity. The funnel results for
Owing to their remarkable characteristics, refractory molybdenum nitride (MoNx)-based compounds have been deployed in a wide range of strategic industrial applications. This review reports the electronic and structural properties that render MoNx materials as potent catalytic surfaces for numerous chemical reactions and surveys the syntheses, procedures, and catalytic applications in pertinent industries such as the petroleum industry. In particular, hydrogenation, hydrodesulfurization, and hydrodeoxygenation are essential processes in the refinement of oil segments and their conversions into commodity fuels and platform chemicals. N-vacant sites over a catalyst’s surface are a significant driver of diverse chemical phenomena. Studies on
... Show MoreThis study was conducted at the Poultry Research Station of the Agricultural Research Department/Ministry of Agriculture in Abu Ghraib for the period from 25/2/2019 to 7/4/2019 (42 days) with the aim of using several levels of Spirulina (SP)
The UV−VIS absorption spectroscopy technique was used to study the formation of a new complex of charge transfer (CT) between bioactive organic molecules as (Nystatin) containing both a π-electrons from a conjugated system and lone-pair of electrons (amine) with Tetrachloro-1,4 benzoquinone (TCBQ) as a π-acceptor in which the transferred electron goes into its vacant anti-bonding molecular orbitals. The Tyrian purple-colored complex formed was quantitatively measured at 544 nm. This complex shows obeying Beer's law within the concentration range of (10-90) μg.ml-1The stoichiometry of the formed complex between the (Nys.) and (TCBQ) was found 1:2 as evaluated by continuous variation (Job's method) and mole ratio method The value of mola
... Show MoreSurface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class
... Show MoreResearchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreThe objective of this research is employ the special cases of function trapezoid in the composition of fuzzy sets to make decision within the framework of the theory of games traditional to determine the best strategy for the mobile phone networks in the province of Baghdad and Basra, has been the adoption of different periods of the functions belonging to see the change happening in the matrix matches and the impact that the strategies and decision-making available to each player and the impact on societ
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThe study aims to discuss the relation between imported inflation and international trade of Iraqi economy for the period (1990-2015) by using annual data. To achieve the study aim, statistical and Econometrics methods are used through NARDL model to explain non-linear relation because it’s a model assigned to measure non-linear relations and as we know most economic relations are non-linear, beside explaining positive and negative effects of imported inflation, and to reach the research aim deductive approach was adopted through using descriptive method to describe and determine phenomenon. Beside the inductive approach by g statistical and standard tools to get the standard model explains the
... Show MoreIn this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden
... Show More