Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered from five drilled wells were involved in modeling process.Approximatlly,85 % of these data were used for training the ANN models, and 15% to assess their accuracy and direction of stability. The results of the simulation showed good matching between the raw data and the predicted values of ROP by Artificial Neural Network (ANN) model. In addition, a good fitness was obtained in the estimation of drilling cost from ANN method when compared to the raw data.
One of the wellbore instability problems in vertical wells are breakouts in Zubair oilfield. Breakouts, if exceeds its critical limits will produce problems such as loss circulation which will add to the non-productive time (NPT) thus increasing loss in costs and in total revenues. In this paper, three of the available rock failure criteria (Mohr-Coulomb, Mogi-Coulomb and Modified-Lade) are used to study and predict the occurrence of the breakouts. It is found that there is an increase over the allowable breakout limit in breakout width in Tanuma shaly formation and it was predicted using Mohr-Coulomb criterion. An increase in the pore pressure was predicted in Tanuma shaly formation, thus; a new mud weight and casing pr
... Show MoreThis study aimed to analyze and measure the relationship between oil revenues and financial sustainability in Iraq, the study used the stylistic approach inductive and deductive approach. Accompanied by the use of quantitative and analytical style, which was based on two variables oil revenues and net general budget on annual data covered the period (1990-2013). Among the most important findings of the study contain the time-series variables study on the root of the unit and is not stable in the general level, and become stable after the use of mathematical processors to gain access to a stable by taking the first difference of natural Ogartm of the series. The way (Johnson) to a long-term relationship between oil revenues and ne
... Show MoreThe fluctuations in oil prices in world markets affect the general budget and the trade balance of the rent countries, because oil is a strategic commodity affected by economic and political factors. The fluctuations in oil prices affect the public budgets of the rent countries through the public revenue side of oil revenues. On the other hand, these fluctuations affect the balance of trade through the volume of oil exports, which lead to imbalance of trade surplus or deficit . &nbs
... Show More<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreThe selection of proper field survey parameters of electrical resistivity can significantly provide efficient results within a reasonable time and cost. Four electrode arrays of 2D Electric Resistivity Imaging (ERI) surveys were applied to characterize and detect subsurface archaeological bodies and to determine the appropriate array type that should be applied in the field survey. This research is to identify the subsurface features of the Borsippa archaeological site, Babylon Governorate, Middle Iraq. Synthetic modeling studies were conducted to determine the proper array and parameters for imaging the shallow subsurface features or targets. The efficiency of many array types has been tested for the detection the buried archaeolog
... Show More