Preferred Language
Articles
/
ijcpe-503
Prediction of penetration Rate and cost with Artificial Neural Network for Alhafaya Oil Field

Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered from five drilled wells were involved in modeling process.Approximatlly,85 % of these data were used for training the ANN models, and 15% to assess their accuracy and direction of stability. The results of the simulation showed good matching between the raw data and the predicted values of ROP by Artificial Neural Network (ANN) model. In addition, a good fitness was obtained in the estimation of drilling cost from ANN method when compared to the raw data.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Engineering/
Water quality assessment and total dissolved solids prediction using artificial neural network in Al-Hawizeh marsh south of Iraq

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The

... Show More
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Water Quality Assessment and Total Dissolved Solids Prediction using Artificial Neural Network in Al-Hawizeh Marsh South of Iraq

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope

... Show More
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Compression Index and Compression Ratio Prediction by Artificial Neural Networks

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Engineering
Priority Based Transmission Rate Control with Neural Network Controller in WMSNs

Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To

... Show More
View Publication
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Priority Based Transmission Rate Control with Neural Network Controller in WMSNs

Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia appli

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 24 2021
Journal Name
Ieee Access
Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System

An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to

... Show More
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization

In the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as  a particles with low-density and diameter (5 mm) in a (9.2 cm) inner diameter with height (200 cm) of vertical perspex column. The effectiveness of gas velocity Ug , liquid velocity UL, liquid viscosity μL, and particle density ρs on bed porosity BP and solid holdups εg were determined. The bed porosity increases with "increasing gas velocity", "liquid velocity", and "liquid viscosity". Solid holdup decreases with increasing gas, liquid

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Artificial Neural Network Model for Wastewater Projects Maintenance Management Plan

Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Apr 03 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
An Integrated Grasshopper Optimization Algorithm with Artificial Neural Network for Trusted Nodes Classification Problem

Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica

... Show More
Scopus Clarivate Crossref
View Publication